Math, asked by rawatsonia178, 5 months ago

The chords AB and CD of a circle are parallel to each other and lie on the
opposite sides of the centre of the circle. If AB = 8 cm, CD = 6 cm and the
radius of the circle is 5 cm. Find the distance between the chords AB and
CD​

Answers

Answered by Itzgoldenking
4

ANSWER

Given−

AB=8cmandCD=6cmaretwoparallelchorddsof

acirclewithcetreO.

ThedistancebetweenAB&CDis1cm.

Tofindout−

Theradiusofthegivencircle=?

Solution−

WedropperpendicularOMonABfromO.OMmeets

ABatM.

OMisextendedtomeetCDatN.

OA&OCarejoined.

∴OA&OCareradiiofthegivencircle.

OM⊥AB⟹∠AMO=90

o

=∠CNO

(correspondinganglesoftwoparallellines)

SoON⊥CD.

SoMNisthedistancebetweenAB&CD

i.eMN=1cm.

LetOM=xcm,thenON=(x+1)cm.

NowOM⊥AB⟹AM=

2

1

AB=

2

1

×8cm=4cm

(sincetheperpendicular,fromthecentreofacircle

toanyofitschords,bisectsthelatter).

AgainOM⊥AB.

∴ΔOAMisarightonewithOAashypotenuse.

So,byPythagorastheorem,weget

OA=

OM

2

+AM

2

=

x

2

+4

2

......(i).

Similarly,ON⊥CD⟹CN=

2

1

CD=

2

1

×6cm=3cm

(sincetheperpendicular,fromthecentreofacircle

toanyofitschords,bisectsthelatter).

AgainON⊥CD.

∴ΔOCNisarightonewithOC=OAashypotenuse.

So,byPythagorastheorem,weget

OC=OA=

ON

2

+CN

2

=

(x+1)

2

+3

2

......(ii).

Comparing(i)&(ii)weget

x

2

+4

2

=

(x+1)

2

+3

2

⟹2x=6

⟹x=3cm.

So,consideringΔOMA

∠OMA=90

o

.

∴ΔOMAisarightonewithOAashypotenuse.

So,byPythagorastheorem,weget

OA=

OM

2

+AM

2

=

x

2

+4

2

=

3

2

+4

2

cm=5cm.

So the radius of the given circle is 5cm.

Ans− 8 cm

Similar questions