Math, asked by hemanth7632, 2 months ago

The circle passing through the intersection of x2 + y2 - 4 = 0 and x2 + y2 - 6x + 5 = 0 which passes through the point (2.1) is

Answers

Answered by amansharma264
40

EXPLANATION.

Circle passing through the intersection.

⇒ x² + y² - 4 = 0.

⇒ x² + y² - 6x + 5 = 0.

Passes through the point = (2,1).

As we know that,

The equation of the circle passing through the points of intersection of the circle : S = 0  and  L = 0  is S + λL = 0.

⇒ S₁ + λS₂ = 0.

⇒ (x² + y² - 4) = λ(x² + y² - 6x + 5).

Passes through the point = (2,1).

⇒ [(2)² + (1)² - 4] = λ[(2)² + (1)² - 6(2) + 5].

⇒ [4 + 1 - 4] = λ[4 + 1 - 12 + 5].

⇒ 1 = λ[10 - 12].

⇒ 1 = λ(-2).

⇒ λ = -1/2.

Put the value of λ = -1/2 in the equation, we get.

⇒ (x² + y² - 4) = λ(x² + y² - 6x + 5).

⇒ (x² + y² - 4) = (-1/2)(x² + y² - 6x + 5).

⇒ 2(x² + y² - 4) = (-1)(x² + y² - 6x + 5).

⇒ 2x² + 2y² - 8 = -x² - y² + 6x - 5.

⇒ 2x² + 2y² - 8 + x² + y² - 6x + 5 = 0.

⇒ 3x² + 3y² - 6x - 3 = 0.

⇒ 3(x² + y² - 2x - 1) = 0.

⇒ x² + y² - 2x - 1 = 0.

                                                                                                                       

MORE INFORMATION.

(1) = Length of tangent : = √S₁.

(2) = Pair of tangents = SS₁ = T².

Similar questions