Math, asked by srihithasai18852, 7 months ago

The circle x^{2}+y^{2}=4x2+y2=4 cuts the line joining the points A(1,0)A(1,0) and B(3,4)B(3,4) in two points PP and
Q let \frac{B P}{P A}=\alpha,PABP​=α, and \frac{B Q}{Q A}=\betaQABQ​=β then \alphaα and \betaβ are roots of the equation​

Answers

Answered by Swarup1998
1

Given: the circle x^{2}+y^{2}=4 cuts the line joining the points A\:(1,\:0) and B\:(3,\:4) in two points P and Q

To find: let \frac{BP}{PA}=\alpha and \frac{BQ}{QA}=\beta; then \alpha and \beta are the roots of which equation

Solution:

The given circle is \x^{2}+y^{2}=4\:\:...(1)

The straight line passing through the points A\:(1,\:0) and B\:(3,\:4) is given by

\quad \frac{y-0}{0-4}=\frac{x-1}{1-3}

\Rightarrow \frac{y}{-4}=\frac{x-1}{-2}

\Rightarrow -2y=-4x+4

\Rightarrow 2y=4x-4

\Rightarrow y=2x-2

Now substituting the value of y in (1) no. equation, we get

\quad x^{2}+(2x-2)^{2}=4

\Rightarrow x^{2}+4x^{2}-8x+4=4

\Rightarrow 5x^{2}-8x=0

\Rightarrow x\:(5x-8)=0

This gives: x=0,\:\frac{8}{5}

  • When x=0, we get y=-2

  • When x=\frac{8}{5}, we get y=\frac{6}{5}

So we have the following points:

  • A\:(1,\:0)
  • B\:(3,\:4)
  • P\:(0,\:-2)
  • Q\:(\frac{8}{5},\:\frac{6}{5})

Now we find the distances BP, PA, BQ and QA using the formuma for distance between two points:

  • BP=\sqrt{(3-0)^{2}+(4+2)^{2}} units
  • =\sqrt{9+16} units
  • =\sqrt{25} units
  • =5 units

  • PA=\sqrt{(1-0)^{2}+(0+2)^{2}} units
  • =\sqrt{1+4} units
  • =\sqrt{5} units

  • BQ=\sqrt{(3-\frac{8}{5})^{2}+(4-\frac{6}{5})^{2}} units
  • =\sqrt{\frac{49}{25}+\frac{196}{25}} units
  • =\sqrt{\frac{245}{25}} units
  • =\sqrt{\frac{49}{5}} units
  • =\frac{7}{\sqrt{5}} units

  • QA=\sqrt{(\frac{8}{5}-1)^{2}+(\frac{6}{5}-0)^{2}} units
  • =\sqrt{\frac{9}{25}+\frac{36}{25}} units
  • =\sqrt{\frac{45}{25}} units
  • =\sqrt{\frac{9}{5}} units
  • =\frac{3}{\sqrt{5}} units

Now, \alpha=\frac{BP}{PA}=\frac{5}{\sqrt{5}}=\sqrt{5}

and \beta=\frac{BQ}{QA}=\frac{7}{3}

We can find that \alpha and \beta are the roots of the equation:

\quad (x-\sqrt{5})(x-\frac{7}{3})=0

\Rightarrow x^{2}-(\sqrt{5}+\frac{7}{3})\:x+\frac{7}{3}\sqrt{5}=0

\Rightarrow 3x^{2}-(7+3\sqrt{5})\:x+7\sqrt{5}=0

Answer: 3x^{2}-(7+3\sqrt{5})\:x+7\sqrt{5}=0

Similar questions