Math, asked by tariqbinzia123, 3 months ago

the circular portions of the following figures are semicircles.For each of the following figures, find its perimeter and area
pls tell
its important
hurry answer is 56.5cm and 191cm²
I need working ​

Attachments:

Answers

Answered by Anonymous
4

There are three semicircles in the figure.

Let the radius for the bigger semicircle be R and fir the two smaller circle be r1 and r2.

Now,

 \boxed{ \underline{ \gray{ \sf{Perimeter  \: of  \: semi-circle  \: = \frac{1}{2} \pi r \:  + 2r }}}}

 \boxed{ \underline{ \gray{ \sf{Area  \: of  \: semi - circle = \frac{\pi  {r}^{2} }{ 2 }  }}}}

Diameter of bigger circle = 18 cm

 \sf \therefore \: Radius =  \dfrac{18}{2}  \implies \: 9cm

 \sf \: Perimeter =  \dfrac{1}{2} \pi r \:  +  \: 2r \\  \\  \sf \:  =  \:  \frac{1}{ \cancel2}  \times  \frac{ \cancel{22} \: ^{11} }{7}  \times 9 + 2 \times 9 \\  \\  \sf \:  =  \:   \frac{99}{7}  + 18 \\  \\  \sf \:  =  \:  \frac{99 + 126}{7}  \\  \\  \:  =  \:   \boxed{ \sf \: \frac{225}{7} cm}

 \sf \: Area  \: of  \: the \:  bigger \:  semicircle =  \dfrac{\pi  {r}^{2} }{2}  \\  \sf \:  =  \frac{ \frac{22}{7}  \times  {9}^{2} }{2}  \\  \\  \sf \:  =  \frac{22 \times 81}{7}  \times  \frac{2}{1}  \\  \\   \:  =  \boxed{ \sf{ \frac{3564}{7}  {cm}^{2} }}

Now,

Diameter of the 1st small circle = 9 cm

Diameter of the 2nd small circle = 9cm

  \sf \: \therefore \: Radius  \: of \: the \: two \: semicircles=  \frac{9}{2}  \\  \sf \implies4.5 \: cm

 \sf \: Perimeter  \: of \:  the \:  1st  \: small \:  semicircle =  \dfrac{1}{2} \pi r1 \:  +  \: 2r2 \\  \\  \sf \:  =  \:  \frac{1}{2}  \times  \frac{22}{7}  \times 4.5 + 2 \times 4.5 \\  \\  \sf \:  =  \:  \frac{1}{ \cancel2}  \times  \frac{ \cancel{22}  \: ^{11} }{7}  \times  \frac{ \cancel{45}  \: ^{9} }{ \cancel{10}  \: ^{2} }  +  \cancel2 \times  \frac{ \cancel{45} \:  ^{9} }{ \cancel{10}   \: ^{ \cancel5} }  \\  \\  \sf \:  =  \:  \frac{99}{14}  + 9 \\  \\  \sf \:  =  \:  \frac{99 + 126}{14}  \\  \\   \:  =  \:   \boxed{ \sf{\frac{225}{14} cm}}

 \sf \: Area  \: of \:  1st \:  smaller  \: circle =  \frac{\pi {r}^{2} }{2}  \\  \sf \:  =  \frac{ \frac{22}{7}  \times  ({4.5})^{2} }{2}  \\  \\  \sf \:  =  \frac{ \frac{22}{7} \times  \frac{45}{10} \times  \frac{45}{10}   }{2}  \\  \\  \sf \:  =  \frac{ \cancel{22} ^{11} }{7}  \times  \frac{ \cancel{45}  \: ^{9} }{ \cancel{10}  \: ^{ \cancel2} }  \times  \frac{ \cancel{45}  \: ^{9} }{ \cancel{10}  \: ^{ \cancel5} }  \times  \frac{ \cancel2}{1}  \\  \\   \:  =   \boxed{ \sf{\frac{891}{7}  {cm}^{2} }}

Since, the radius of the two small semicircles are same, therefore the perimeter and area of the two small semicircles will be same.

 \sf \: Perimeter  \: of  \: the  \: 2nd  \: small  \: semicircle =  \dfrac{225}{14} cm

 \sf \: Area \:  of  \: the  \: 2nd \:  small  \: semicircle =  \dfrac{891}{7}  {cm}^{2}

Now,

Perimeter of the figure = Perimeter of bigger circle + Perimeter of the 1st small semi circle + Perimeter of the 2nd small semi circle

 \sf \:  =  \:  \dfrac{225}{7}  +  \dfrac{225}{14}  +  \dfrac{225}{14}  \\  \\  \sf \: =   \frac{225}{7}  +  \frac{450}{14}  \\  \\  \sf \:  =  \frac{450 + 450}{14}  \implies \:  \frac{900}{14} cm \: \:  \red{=>56.5 cm}

And,

Area of the figure = Area of the bigger semicircle + Area of 1st semicircle + Area of 2nd semicircle

 \sf \:  =  \:  \frac{3564}{7}  +  \frac{891}{7}  +  \frac{891}{7}  \\  \\  \sf \:  =  \frac{3564 + 891 + 891}{7}  \\  \\  \sf \:  =  \frac{5346}{7} {cm}^{2}    \:  \:  \: \red{\implies{ \:763.71 {cm}^{2}  }}

Answered by mohammedsinan6499
2

Answer:

There are three semicircles in the figure.

There are three semicircles in the figure.Let the radius for the bigger semicircle be R and fir the two smaller circle be r1 andr2

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}}

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle=

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 2

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r Area of semi - circle {r}^{2} }{ 2 }

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r Area of semi - circle {r}^{2} }{ 2 }Areaofsemi−circle=

Perimeter of semi-circle = \frac{1}{2} \pi r \: + 2r }}}} Perimeterofsemi−circle= 21 πr+2r Area of semi - circle {r}^{2} }{ 2 }Areaofsemi−circle= 2 πr

πr 2

πr 2

πr 2

πr 2

πr 2

πr 2

πr 2

πr 2

πr 2 Diameter of bigger circle = 18 cm

πr 2 Diameter of bigger circle = 18 cm\therefore \: Radius ={18}{2} implies 9cm∴Radius= ?

answer

⟹ ⟹763.71cm

⟹ ⟹763.71cm 2

⟹ ⟹763.71cm 2

⟹ ⟹763.71cm 2

Similar questions