Math, asked by ds100004, 3 months ago

The circumcentre of a triangle whose vertices are (-2, -3), (-1, 0), (7, -6)​

Answers

Answered by shadowsabers03
8

Let (x, y) be the circumcenter, which is equidistant from the vertices of the triangle (-2, -3), (-1, 0) and (7, -6) each.

Let the distance be d. So, by distance formula,

\longrightarrow d^2=(x+2)^2+(y+3)^2

\longrightarrow d^2=x^2+y^2+4x+6y+13\quad\quad\dots(1)

and,

\longrightarrow d^2=(x+1)^2+(y-0)^2

\longrightarrow d^2=x^2+y^2+2x+1\quad\quad\dots(2)

and,

\longrightarrow d^2=(x-7)^2+(y+6)^2

\longrightarrow d^2=x^2+y^2-14x+12y+85\quad\quad\dots(3)

Equating (1) and (2),

\longrightarrow x^2+y^2+4x+6y+13=x^2+y^2+2x+1

\longrightarrow x=-3y-6\quad\quad\dots(4)

Equating (2) and (3),

\longrightarrow x^2+y^2+2x+1=x^2+y^2-14x+12y+85

\longrightarrow 16x-12y-84=0

Putting value of  from (4),

\longrightarrow 16(-3y-6)-12y-84=0

\longrightarrow -60y-180=0

\longrightarrow y=-3

Then from (4),

\longrightarrow x=-3(-3)-6

\longrightarrow x=3

Hence the circumcenter of the triangle is (x, y) = (3, -3).

Answered by mahakalFAN
8

➖➖➖➖➖➖➖➖➖➖

refer attachment

➖➖➖➖➖➖➖➖➖➖

hope it helps❤᭄࿐

Attachments:
Similar questions
Math, 10 months ago