Math, asked by radhakrishnamurthi73, 2 months ago



The circumcentre of the triangle formed by (1, - 2), (2, 4) and (3,-6) is



Answers

Answered by shadowsabers03
39

Let (x, y) be the circumcenter of the triangle having vertices (1, -2), (2, 4) and (3, -6).

The circumcenter is equidistant from all the vertices of the triangle. Therefore, if d is the distance of the circumcenter from any of the vertex,

\longrightarrow d^2=(x-1)^2+(y+2)^2\quad\quad\dots(1)

\longrightarrow d^2=(x-2)^2+(y-4)^2\quad\quad\dots(2)

\longrightarrow d^2=(x-3)^2+(y+6)^2\quad\quad\dots(3)

Equating (1) and (2),

\longrightarrow(x-1)^2+(y+2)^2=(x-2)^2+(y-4)^2

\longrightarrow x^2+y^2-2x+4y+5=x^2+y^2-4x-8y+20

\longrightarrow x=\dfrac{15}{2}-6y\quad\quad\dots(4)

Equating (2) and (3),

\longrightarrow (x-2)^2+(y-4)^2=(x-3)^2+(y+6)^2

\longrightarrow x^2+y^2-4x-8y+20=x^2+y^2-6x+12y+45

\longrightarrow 2x-20y-25=0

Putting value of x from (4),

\longrightarrow 2\left(\dfrac{15}{2}-6y\right)-20y-25=0

\longrightarrow y=-\dfrac{5}{16}

And from (4),

\longrightarrow x=\dfrac{15}{2}-6\left(-\dfrac{5}{16}\right)

\longrightarrow x=\dfrac{75}{8}

Hence the circumcenter is \bf{\left(\dfrac{75}{8},\ -\dfrac{5}{16}\right)}.

Similar questions