The circumcentre of the triangle with vertices
at (4, 6), (0,4) and (6,2) is
Answers
Answer:
Let the coordinates of the circumcentre of the triangle be P(x, y).Circumcentre of a triangle is equidistant from each of the vertices.
So PA = PB = PC
statement : circumcenter is equidistant from the vertices of triangle ABC
Now
\sqrt{(x-4)^{2}+(y-6)^{2}} = \sqrt{(x-0)^{2} + (y-4)^{2}} = \sqrt{(x-6)^{2}+(y-2)^{2}}
(x−4)
2
+(y−6)
2
=
(x−0)
2
+(y−4)
2
=
(x−6)
2
+(y−2)
2
Now take ,
\begin{lgathered}\sqrt{(x-4)^{2}+(y-6)^{2}} = \sqrt{(x-0)^{2} + (y-4)^{2}}\\\implies x^{2}+16-8x+y^{2}+36-12x = x^{2}+y^{2}+16-8x\\\implies 16+36-12x=16\\\implies 36=12x\\\implies x = 3\end{lgathered}
(x−4)
2
+(y−6)
2
=
(x−0)
2
+(y−4)
2
⟹x
2
+16−8x+y
2
+36−12x=x
2
+y
2
+16−8x
⟹16+36−12x=16
⟹36=12x
⟹x=3
\begin{lgathered}\sqrt{(x-0)^{2} + (y-4)^{2}} = \sqrt{(x-6)^{2}+(y-2)^{2}}\\\implies x^{2}+y^{2}+16-8x = x^{2}+36-12x+y^{2}+4-4y\\\implies 16-8x = 36-12x+4-4y\\\implies 16-8(3)=36-12(3)+4-4y\\\implies -8 = 4-4y\\\implies -8-4 =-4y\\\implies -12 = -4y \\\implies y = 3\end{lgathered}
(x−0)
2
+(y−4)
2
=
(x−6)
2
+(y−2)
2
⟹x
2
+y
2
+16−8x=x
2
+36−12x+y
2
+4−4y
⟹16−8x=36−12x+4−4y
⟹16−8(3)=36−12(3)+4−4y
⟹−8=4−4y
⟹−8−4=−4y
⟹−12=−4y
⟹y=3
let the circumcentre be P(x,y)
then PA =PB
√(x-4)^2+(y-6)^=√(x-0)^2+(y-4)^2
x^2-8x+16+y^2-12y+36=x^2+y^2-8y+16
-8x-4y=-36
2x+y=9
PA=PC
√(x-4)^2+(y-6)^2=√(x-6)^2+(y-2)^2
x^2-8x+16+y^2-12y+36=x^2-12x+36+y^2-4y+4
4x-8y=12
x-2y=-3
on solving 1st and 2nd equation we get : x=3 and y=3
the circumcentre of the given traingle =(3,3)