Math, asked by vaishupalani12, 1 day ago

The circumference of a circle is 220 cm. An arc of the circle subtends 60% at the centre of it. Then find the area of the corresponding major sector?

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ area \: of \: major \: corresponding \: sector \\  \\ given \: that :  \\ circumference \: of \: circle = 220.cm \\ central \: angle \: (θ) = 60 \:  \\  \\ we \: know \: that \\ circumference \: of \: any \: circle = 2\pi.r \\ 2\pi.r = 220 \\  \\ 2 \times  \frac{22}{7}  \times r = 220 \\  \\  \frac{2}{7}  \times r = 10 \\  \\  \frac{r}{7}  = 5 \\  \\ r = 35.cm

thus \: then \:  \\ area \: of \: circle = \pi.r {}^{2}  \\  \\  =  \frac{22}{7}  \times 35 \times 35 \\  \\  = 22 \times 5 \times 35 \\  \\  = 110 \times 35 \\  \\  = 3850 \: cm {}^{2}  \\  \\ so \: then \:  \\ area \: of \: major \: sector = \pi.r {}^{2}  -  \frac{θ}{360}  \times \pi.r {}^{2}  \\  \\  = \pi.r {}^{2} (1 -  \frac{θ}{360}  \: ) \\  \\  = 3850 \times (1 -  \frac{60}{360} ) \\  \\  = 3850 \times (1 -  \frac{1}{6} ) \\  \\  =  \frac{3850 \times 5}{6}  \\  \\  =  \frac{19250}{6}  \: cm {}^{2}

Similar questions