Math, asked by KingBaibhav, 10 months ago

The circumference of a circle is 88 cm. What is the area of the circle​

Answers

Answered by Anonymous
3

 \sf  \purple{ \huge  \underline{\fbox{ \: Solution : \:  \: }}}

Given ,

The circumference of circle = 88 cm

We know that , the circumference of circle is given by

 \mathtt{ \large \fbox{Circumference \:  of  \: circle = 2\pi r}}

 \sf \hookrightarrow 2 \times  \frac{22}{7}  \times r = 88 \\   \\  \sf \hookrightarrow \frac{r}{7}  =  \frac{88}{44}  \\  \\ \sf \hookrightarrow r = 2 \times 7 \\  \\ \sf \hookrightarrow  r = 14 \: cm

Hence , the radius of circle is 14 cm

Now , the area of circle is given by

 \mathtt{ \large \fbox{Area  \: of \:  circle = \pi {(r)}^{2} }}

Substitute the value , we obtain

 \sf \hookrightarrow Area =  \frac{22}{ \cancel7}   \times  \cancel14  \times  \\  \\ \sf \hookrightarrow  Area = 22 \times 2 \times 14 \\  \\\sf \hookrightarrow   Area = 616 \:  \:  {cm}^{2}

Hence , the area of circle is 616 cm²

Answered by Anonymous
14

Question :

The circumference of a circle is 88 cm. What is the area of the circle.

Solution :

\underline {\bold{Given:}}

  • The circumference of the circle = 88 cm

\underline {\bold{To\:Find:}}

  • The area of the circle.

\boxed {\pink{Radius=\frac{Circumference}{2\pi}}}

 \implies Radius=\frac{Circumference}{2\pi} \\ \implies Radius =  (\frac{88}{2 \times  \frac{22}{7} } ) \: cm \\ \implies Radius = (\frac{88}{ \frac{44}{7} } ) \: cm \\ \implies Radius = (88 \times  \frac{7}{44} ) \: cm \\ \implies Radius = 14 \: cm

\boxed {\pink{Area=\pi  r^2}}

 \implies Area=\pi  r^2 \\ \implies Area= \frac{22}{7}  \times  {(14 \: cm)^2}  \\ \implies Area= \frac{22}{7}  \times 196 \: cm^2 \\ \implies Area= 616 \: cm^2

\boxed{\therefore{\green{The\: area \:of \:the \:circle\:is\: 616 \: cm^2.}}}

#AnswerWithQuality

#BAL

Similar questions