Math, asked by devil7945, 1 year ago

The circumference of a circle with centre o is divided into three arcs apb, bqc, cra such that: arc apb ÷2 = arc bqc÷3=arc cra ÷4.. Find boc

Answers

Answered by nitkumkumar
29

Answer:

∠BOC   =  120°

Step-by-step explanation:

Here,  It is given that arc apb ÷2 = arc bqc÷3=arc cra ÷4

=>  (arc apb)/2  = (arc bqc/3) = (arc cra/4)

Let this is equal to k .

=>  (arc apb)/2  = (arc bqc/3) = (arc cra/4)  =  k

=>  (arc apb)  =  2k

=>   (arc bqc)  =  3k

=>   (arc cra)   =  4k

If we add the three arcs the complete circle is formed .

So,  (arc apb) + (arc bqc) + (arc cra)  =  2k + 3k + 4k

                                                         =  9k

This is equal to circumference of circle .

=>  2pi * r  =  9k

As, arc of circle   =  (∅/360) * (2pi * r)

where, ∅  =  angle subtended by arc .

Here, ∠BOC is the angle subtended by arc BQC .

=>   3k  =  (∅/360) * (2pi * r)

=>    3k  =  (∅/360) * 9k

=>   ∅ = 120°

Thus,  ∠BOC   =  120°

Similar questions