Math, asked by Fjzbsn, 3 months ago

The circumference of a right circular cylinder is 44 cm and its height is 15 cm.Find the radius and CSA of cylinder.

Answers

Answered by gmahajan1203
2

Step-by-step explanation:

C.S.A. of cylinder =4400 sq. cm.

⇒2πrh=4400

⇒(110)h=4400

⇒h=110/4400

= 40 cm

Height = 40 cm

Circumference of base of cylinder 110 cm

⇒2πr = 110

⇒2× 22/7 × r = 110

= r = 35/5

= r = 17.5 cm

Diameter 2r

2(35/2)

= 35 cm

Answered by ItzWhiteStorm
20

Answer:-

\\

  • The radius of cylinder is 7 cm.
  • The CSA of cylinder is 608 cm².

Solution:-

\\

We have,

  • Circumference of a right circular cylinder (C) = 14 cm
  • Height (h) = 15 cm
  • Radius = r
  • CSA of cylinder = CSA

\\

Required Formula:-

 \\  \longrightarrow\sf{Circumference\;of\;cylinder\;=\;2\pi r} \\  \\ \longrightarrow \sf{CSA \: of \;cylinder  =  \: 2\pi rh} \\

Applying the values to find radius of cylinder,

 \\ \implies\sf{2\pi r = 44} \\  \\ \implies\sf{2 \times  \frac{22}{7} \times r = 44} \\  \\ \implies\sf{2 \times 22  \times r = 44  \times 7} \\  \\ \implies\sf{44 \times r = 308} \\  \\ \implies\sf{r =  \frac{308}{44}} \\  \\ \implies  \underline{\boxed{\frak{r = 7}}} \:  \pink{ \bigstar}

∴ Radius of cylinder is 7 cm.

Now,Finding the CSA of cylinder,

 \\ \implies\sf{CSA = 2\pi rh} \\  \\ \implies\sf{CSA = 44 \times 15} \\  \\ \implies\underline{\boxed{\frak{CSA  = 660 \:  {cm}^{2}}}}\;\red{\bigstar}

CSA of cylinder is 660 cm².

____________________________________

Similar questions