Math, asked by seeratjaviad11, 1 day ago

the circumference of circle is 88 find the area

Answers

Answered by Yuseong
23

Given Information :

  • Circumference of circle = 88 units

To calculate :

  • Area of the circle

Solution :

As we know that,

\bigstar \boxed{\red{\sf{ C = 2\pi r}}}\\

  • C denotes circumference
  • r denotes radius

 \implies\sf { 88 \; units = 2 \times \dfrac{22}{7} \times r} \\

 \implies\sf { 88 \; units = \dfrac{44}{7} \times r} \\

 \implies\sf { \cancel{88} \times \dfrac{7}{\cancel{44}} \; units = r} \\

 \implies\sf { 2 \times \dfrac{7}{1} \; units = r} \\

\implies\boxed{\red{\sf{ 14\; units = r}}}\\

Now, as we know that :

\bigstar \boxed{\red{\sf{ Area_{(Circle)} = \pi r^2}}}\\

Substitute the values.

 \implies\sf { Area = \Bigg \{ \dfrac{22}{7} \times (14)^2 \Bigg \} \; units^2 } \\

 \implies\sf { Area = \Bigg \{ \dfrac{22}{7} \times 196 \Bigg \} \; units^2 } \\

 \implies\sf { Area = \Bigg \{ \dfrac{22}{1} \times 28 \Bigg \} \; units^2 } \\

\implies\boxed{\red{\sf{Area = 616 \; units^2 }}}\\

The area of the circle is 616 square units.

\rule{200}2

Answered by BrainlySparrow
22

Given :

  • Circumference of circle = 88 units

To Find :

  • Area of the circle.

Concept :

~As per the given question we have that, Circumference of a circle is 88 units. We need to find out the area of it. For this firstly will have to find the radius of the circle using the formula of a circumference of a circle. After, finding radius we can simply use the formula of area of a circle.

Formulae Used :

 \\  \longrightarrow \boxed{ \bf \: Circumference_{(Circle)} = 2\pi r}

 \\  \longrightarrow \boxed{ \bf \: Area_{(Circle)}  = \pi  {r}^{2} }

Where,

  • r = radius
  • π = 22/7 or 3.14

Solution :

~Keeping all these things in mind let's start :D!

As we know that,

 \\  \longrightarrow { \bf \: Circumference_{(Circle)} = 2\pi r}

Substituting the values we get,

 \\  \sf \longrightarrow88 \: units = 2\pi r \\   \\ \longrightarrow  \sf \dfrac{88}{2}  =  \dfrac{22}{7}  \times r \\  \\ \longrightarrow  \sf  \cancel\dfrac{88}{2}  =  \dfrac{22}{7}  \times r \\  \\  \longrightarrow  \sf 44  =  \dfrac{22}{7}  \times r \\  \\  \longrightarrow\sf 44   \times  \dfrac{7}{22} =   r \\  \\ \longrightarrow\sf  \cancel{44  } \times  \dfrac{7}{ \cancel{22}} =   r \\  \\ \longrightarrow\sf 2 \times 7 =   r \\  \\ \longrightarrow  \underline{\underline{\bf 14 \: units =   r}}

Thus, the radius is 14 units.!

Now, as we know that,

 \\  \longrightarrow { \bf \: Area_{(Circle)}  = \pi  {r}^{2} }

Substituting the values,

 \\  \sf \longrightarrow \: Area_{Circle} =  \dfrac{22}{7}  \times 14 \times 14 \\  \\ \sf \longrightarrow \: Area_{Circle} =  \dfrac{22}{ \cancel7}  \times  \cancel{14} \times 14 \\  \\ \sf \longrightarrow \: Area_{Circle} = 22 \times 2 \times 14 \\  \\ \longrightarrow  \sf\: Area_{Circle} = 44 \times 14 \\  \\ \longrightarrow \:   \red{\boxed{ \bf \: Area_{Circle} = 616  \:  {units}^{2} }}

∴ The area of the circle is 616 units².

Similar questions