English, asked by riz4263636, 18 days ago

The circumference of the base of a cylinder is 30-8 cm. Ite curved surface ared of 289.52cm find the height of the cylinder. ​

Answers

Answered by SleepingRaaccon
0

Answer:

Given :

Circumference of the base of Cylinder is 30.8 cm .

Curved Surface Area is 289.52 cm² .

To Find :

Height of Cylinder .

Solution :

Firstly we will find Radius :

Using Formula :

\longmapsto\tt\boxed{Circumference\:of\:Circle=2\pi{r}}⟼

CircumferenceofCircle=2πr

Putting Values :

\longmapsto\tt{\dfrac{308}{10}=2\times\dfrac{22}{7}\times{r}}⟼

10

308

=2×

7

22

×r

\longmapsto\tt{308\times{7}=44\times{10}\times{r}}⟼308×7=44×10×r

\longmapsto\tt{2156=440r}⟼2156=440r

\longmapsto\tt{r=\cancel\dfrac{2156}{440}}⟼r=

440

2156

\longmapsto\tt\bf{r=4.9\:cm}⟼r=4.9cm

Now ,

\longmapsto\tt{Radius=4.9\:cm}⟼Radius=4.9cm

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}⟼

C.S.AofCylinder=2πrh

Putting Values :

\longmapsto\tt{\dfrac{28952}{100}=2\times\dfrac{22}{{\cancel{7}}}\times\dfrac{{\cancel{49}}}{10}\times{h}}⟼

100

28952

=2×

7

22

×

10

49

×h

\longmapsto\tt{\dfrac{28952}{100}=\dfrac{44\times{7}\times{h}}{10}}⟼

100

28952

=

10

44×7×h

\longmapsto\tt{\dfrac{28952}{100}=\dfrac{308\:h}{10}}⟼

100

28952

=

10

308h

\longmapsto\tt{h=\dfrac{{\cancel{28952}}\times{1{\not{0}}}}{{\cancel{308}}\times{10{\not{0}}}}}⟼h=

308

×10

0

28952

×1

0

\longmapsto\tt{h=\dfrac{94}{10}}⟼h=

10

94

\longmapsto\tt\bf{h=9.4\:cm}⟼h=9.4cm

So , The Height of Cylinder is 9.4 cm ...

Similar questions