Math, asked by lakshmi704, 19 days ago

The circumference of the base of a cylinder is 88cm and its height is 65cm.
Find its total surface area.

Answers

Answered by anshsinghc1234
3
  1. Using the circumference you can find radius.
  2. Then put the radius with the height given on the formula of circle total surface area 2π(h+r)
Attachments:
Answered by Anonymous
32

Given :

  • Circumference of Base = 88 cm
  • Height of Cylinder = 65 cm

 \\ \\

To Find :

  • Total Surface Area = ?

 \\ \\

Solution :

 \pink\clubs Formula Used :

  •  {\underline{\boxed{\red{\sf{ Circumference{\small_{(Circle)}} = 2 \pi r }}}}}

  •  {\underline{\boxed{\red{\sf{ TSA{\small_{(Cylinder)}} = 2 \pi r \bigg( h + r \bigg)  }}}}}

Where :

  •  {\sf{ \pi = \dfrac{22}{7} }}

  • ➬ r = Radius
  • ➬ h = Height

 \\ \qquad{\rule{150pt}{1pt}}

 \pink\clubs Calculating the Radius :

 {\longmapsto{\qquad{\sf{ Circumference = 2 \pi r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 88 = 2 \times \dfrac{22}{7} \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 88 = 2 \times \dfrac{22}{7} \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 88 = \dfrac{44}{7} \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 88 \times 7 = 44 \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 616 = 44 \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{616}{44} = r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{616}{44} = r }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\color{darkblue}{\pmb{\frak{ Radius = 14 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \pink\clubs Calculating the TSA :

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \pi r \bigg( h + r \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 2 \times \dfrac{22}{7} \times 14 \bigg(65 + 14 \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 2 \times \dfrac{22}{\cancel7} \times \cancel14 \bigg(65 + 14 \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 2 \times 22 \times 2 \bigg(65 + 14 \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 2 \times 22 \times 2 \times 79 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 44 \times 2 \times 79 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ TSA = 88 \times 79 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\color{orange}{\pmb{\frak{ Total \; Surface \; Area = 6952 \; {cm}^{2} }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \pink\clubs Therefore :

❛❛ Total Surface Area of the given Cylinder is 6952 cm² . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions