Math, asked by diviyadharshinitamil, 5 months ago

The circumference of the base of a cylindrical vessel is 176 cm and its height is 30cm. How many
litres of water it can hold?

Answers

Answered by iamqueen1
174

Correct Question :-

The circumference of the base of a cylindrical vessel is 176 cm and its height is 30cm. How many litres of water it can hold?

Answer :-

GIVEN :-

  • Circumference = 176 cm

  • Height = 30 cm

\Large\pink{\boxed{ \bf{\sf Circumference \:  of  \: Circle = 2 \pi \: r}}}</p><p>

We know know ,

π = 22/7

  \mathbf {Substituting  \: the  \: Values}

  \:   \rightarrow \: {\bf{\sf \:2 \times  \frac{22}{7}  \: r = 176}}

\:   \rightarrow{ \bf{\sf \:r = 176 \times  \frac{7}{44} }}

 \red {\boxed { \bf{\sf \:r = 28 \: cm}}}

Now, We have to find Volume of Cylindrer

{\boxed{ \bf{\sf \: Volume  \: of  \: Cylinder = π \:  r² h}}}

 \rightarrow{ \bf{\sf \frac{22}{7}  \times  {28}^{2}  \times 30}}

 \rightarrow \: { \bf{\sf \: Volume = {73920  \: cm }^ {3} }}

\rightarrow \: { \bf{\sf \:1 \: litre =   {1000 \: cm}^{3}}}

∴  { \bf{\sf \: Volume \:  in  \: litres =  \frac{73920}{1000}}}

 \purple{\boxed{ \bf{\sf 73.92 \:  Litres}}}

∴ Cylindrical Vessel can hold about 73.92 litres of water

Answered by somya2563
98

Step-by-step explanation:

\huge\sf\fbox\red{ \:  \: Question \:  \:  \: }::-

The circumference of the base of a cylindrical vessel is 176 cm and its height is 30cm. How many litres of water it can hold?

\huge\sf\fbox\blue{ \:  \: \: Given\:  \:  \: }::-

Base of cylinder = 176cm

Base of cylinder = 176cmHeight of cylinder = 30cm

\huge\sf\underline{To  \: Find :}

Radius =?

Volume of cylinder?

\huge\sf\underline{Formula \:  to  \: Find :}

 \red \star\underline{ \boxed  { \rm{volume \:  of \: cylinder = \pi  r^2h}}}

\huge\sf\fbox\purple{\:  \: Required Solution \:  \:  \: }::-

Substituting the Values :

 \sf :\implies \: 2 ×  \dfrac{22}{7}r = 176 \\ \sf :\implies  \frac{44}{7}r = 176  \: \:  \:  \:  \:  \:  \:  \:  \\ \sf :\implies \: r  = \cancel \red{ 176} \times  \frac{7}{ \cancel \red{44}}  \\ \sf :\implies \: r =  \fbox\green{ 28cm}\:  \:  \:  \:  \:  \:  \:  \:

Thus, we have to find the volume of cylinder

  \large\underline \red{ \boxed  { \rm \pink{\pi \: r^2h}}}

 \sf :\implies \dfrac{22}{7} \times  {28}^{2} \times 30 \\ \sf :\implies  \purple{7392 {0cm}^{3}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\underline \bold{We \:  Know :}

 \sf1 litre = 1000cm^3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf \: Volume \:  of \:  cylinder \:  is \:  liters \:  =  \frac{\cancel \red{73920}}{ \cancel \red{1000} } \\  \sf  :\implies \:   \fbox\green{73.92liters}

 \sf\therefore \: \green{  Cylinder  \: Vessel  \: can  \: hold} \:  \purple{73.92 \: litres} \green{ \: of water.}

.

Hope it helpful.✌️

@Somya2563

Similar questions