Math, asked by ItzHeartlessGirl, 10 months ago

The circumference of the base of a right circular cylinder is 220 cm. If the height of the cylinder is 2 m find the lateral surface area of the cylinder.​

Answers

Answered by Anonymous
18

 \huge \underline \mathsf \red {Solution:-}

Let the height and radius of the cylinder be h and r cm respectively.

Given:

  • Height is 2m = 200cm

As, circumference of base = 220

2πr = 220

\mathsf {2 \times\frac{22}{7} \times r = 220}

r = 35 cm

\mathsf {2 \times\frac{22}{7} \times 35 \times h}

\mathsf {2 \times\frac{22}{7} \times 35 \times 220}

As, Lateral surface of cylinder = 2πrh

= 44000 cm²

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by Anonymous
23

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The circumference of the base of a right circular cylinder is 220 cm. If the height of the cylinder is 2 m.

\bf{\red{\underline{\bf{To\:find\::}}}}

The lateral surface area of the cylinder.

\bf{\red{\underline{\bf{Explanation\::}}}}

We know that perimeter of circle :

\boxed{\bf{Circumference\:of\:circle=2\pi r}}}}

A/q

\longrightarrow\sf{2\pi r=220}\\\\\\\longrightarrow\sf{2\times \dfrac{22}{7} \times r=220}\\\\\\\longrightarrow\sf{\dfrac{44}{7} \times r=220}\\\\\\\longrightarrow\sf{r=\dfrac{\cancel{220}\times 7}{\cancel{44}} }\\\\\\\longrightarrow\sf{r=5\times 7}\\\\\\\longrightarrow\sf{\underline{\orange{r=35cm}}}

We can covert the radius into m

\longrightarrow\sf{r=0.35m}}

Now;

\boxed{\bf{Lateral\:surface\:area\:of\:cylinder=2\pi rh}}}}

\longrightarrow\sf{2\times \dfrac{22}{\cancel{7}} \times \cancel{0.35} \times 2}\\\\\\\longrightarrow\sf{44\times 0.05\times 2}\\\\\\\longrightarrow\sf{(44\times 0.1)m^{2} }\\\\\\\longrightarrow\sf{\orange{\underline{4.4\:m^{2} }}}

Thus;

The lateral surface area of the cylinder is 4.4 m² .

Similar questions