Math, asked by megalabhojan0804, 19 days ago

The circumference of the base of a right circular is 220cm. if the height of the cylinder is 2m, find the curved surface area of the cylinder.

Answers

Answered by preeti353615
18

Answer:

The circumference of the base of a right circular is 220cm. if the height of the cylinder is 2m, then the curved surface area of the cylinder is 44000cm² .

Step-by-step explanation:

Given: Circumference of the circle = 220 cm

height = 2 m = 2 × 100 = 200

Find : The curved surface area of the cylinder.

The lateral surface area of the cylinder = circumference × h

                                                      = 2πr × h

                                                      = 2πrh

                                                      = 220 ×200

                                                      = 44000cm²

Hence  the curved surface area of the cylinder is 44000cm² .

Answered by Starrex
12

Accuraтє Qυєѕтiσи :

The circumference of the base of a right circular cylinder is 220 cm . If the height of the cylinder is 2m , find the curved surface area of cylinder .

Aиѕωєr :

ㅤㅤㅤㅤㅤ~44000 cm²

 \qquad\rule{300pt}{1pt}\qquad

Sσℓυтiσи :

In this question, we have to find the curved surface area / lateral surface area of a cylinder. First , we need to know what is a cylinder ?

A cylinder is a solid composed of two congruent circles in parallel planes, their interiors and all line segments parallel to the line segment containing the centres of both circles with endpoints on the circular region.

Uѕïиg Fσrмυℓα :

ㅤCurved surface area of cylinder :

 \qquad\qquad{\pmb{\mathfrak{\longrightarrow 2\pi r h}}}

ㅤCircumference of circle :

 \qquad\qquad{\pmb{\mathfrak{\longrightarrow 2\pi r}}}

Here we are given that :

  • Circumference of base of right circular cylinder = 220 cm

\qquad\tt{\dashrightarrow \quad circumference = 2\pi r}

\qquad\tt{\dashrightarrow \quad 220 = 2 \times \frac{22}{7}\times r}

\qquad\tt{\dashrightarrow \quad r = 220 \times \dfrac{7}{22\times 2}}

\qquad\tt{\dashrightarrow \quad r = \dfrac{220\times 7 }{22\times 2}}

\qquad\tt{\dashrightarrow \quad r = \cancel{\dfrac{1540}{44}}}

\qquad\tt{\dashrightarrow \quad r = 35 }

  • Radius ( r ) = 35 cm
  • Height of cylinder = 2m

ㅤㅤㅤㅤㅤ( h ) = 2 × 100

ㅤㅤㅤㅤㅤ( h ) = 200 cm

Tнєrєfσrє :

\qquad\tt{\dashrightarrow \quad Area= 2\pi r h}

\qquad\tt{\dashrightarrow \quad Area = 2\times \dfrac{22}{7}\times 35 \times 200 }

\qquad\tt{\dashrightarrow \quad Area= \dfrac{2\times 22\times 35\times 200}{7}}

\qquad\tt{\dashrightarrow \quad Area = \cancel{\dfrac{308000}{7}}}

\qquad{\pmb{\tt{\dashrightarrow \quad Area = 44000}}}

ㅤㅤㅤㅤㅤ~ Hence , the curved surface area of given right circular cylinder is 44000 cm²

 \underline{\rule{350pt}{3pt}}

Similar questions