Math, asked by ranjanvidhu5, 17 days ago

the circumference of the base of cylinder is 30.8cm.Its curved surface area is 289.52.find the height of cylinder​

Answers

Answered by sethrollins13
58

Given :

  • Circumference of the base of Cylinder is 30.8 cm .
  • Curved Surface is 289.52 cm .

To Find :

  • Height of Cylinder .

Solution :

Firstly we'll find the Radius of Cylinder :

Using Formula :

\longmapsto\tt\boxed{Circumference\:of\:Cylinder=2\pi{r}}

Putting Values :

\longmapsto\tt{30.8=2\times\dfrac{22}{7}\times{r}}

\longmapsto\tt{30.8\times{7}=44\:r}

\longmapsto\tt{215.6=44\:r}

\longmapsto\tt{r=\cancel\dfrac{215.6}{44}}

\longmapsto\tt\bf{r=5\:cm(Approx.)}

Now ,

For Height :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{289.52=2\times\dfrac{22}{7}\times{5}\times{h}}

\longmapsto\tt{289.52\times{7}=44\times{5h}}

\longmapsto\tt{2026.64=220\:h}

\longmapsto\tt\bf{h=9.21\:(Approx.)}

Answered by BrainlyResearcher
53

Given :-

  • circumference of base=30.8cm
  • CSA of given cylinder is 289.52cm

{}

{\large{\underline{\pink{\sf{To\:Find\: :-}}}}}

  • Height of Cylinder=?

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

\:\:  \Large{\maltese{\underline{\underline{\gray{\sf{Solution\: :-}}}}}}

{}

Formula Using

\boxed{\begin{array}{ccc} \longmapsto \sf Circumference_{\:Circle}=2 \pi rh \\ \\ \longmapsto \sf CSA_{\:Cylinder}=2\pi rh \end{array}}

\:\: \large{\bigstar{\underline{\underline{\sf{Calculation\: :-}}}}}

{}

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

Calculating radius

{\dashrightarrow{\sf{\qquad Circumference=2\pi r}}}

Putting Values...

{\dashrightarrow{\sf{\qquad 30.8=2\times \dfrac{22}{7} r}}}

{\dashrightarrow{\sf{\qquad 44r=7 \times 30.8}}}

{\dashrightarrow{\sf{\qquad 44r=215.6}}}

{\dashrightarrow{\sf{\qquad r= \dfrac{215.6}{44}}}}

{\dashrightarrow{\sf{\qquad r= \cancel\dfrac{215.6}{44}=5}}}

{\rightsquigarrow{\qquad{\:\:\:\: {\underline{\boxed{\sf{radius\:of\:cylinder=5cm(approx)}}}}}}}

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

{}

Calculating Height

{\dashrightarrow{\sf{\qquad CSA=2\pi rh}}}

Putting Values ...

{\dashrightarrow{\sf{\qquad 289.52=2\times \dfrac{22}{7} \times 5 \times h }}}

{\dashrightarrow{\sf{\qquad 7 \times 289.52=220h}}}

{\dashrightarrow{\sf{\qquad h=\dfrac{2026.64}{220}}}}

{\dashrightarrow{\sf{\qquad h=\cancel\dfrac{2026.64}{220}=9.21}}}

{\rightsquigarrow{\qquad{\:\:\:\: {\underline{\boxed{\sf{height\:of\:cylinder=\red{9.21cm(approx)}}}}}}}}

 \begin{gathered} \\ {\rule{200pt}{2pt}} \end{gathered}

{\therefore}Approximately height of given Cylinder is 9.21 cm

\begin{gathered} \\ {\underline{\rule{200pt}{7pt}}} \end{gathered}

Similar questions