Math, asked by dp14380dinesh, 7 months ago


The Classification of Finite Simple Groups.

hlo ans plz❤️❤️ plz don't post irrelevant answer otherwise it will be reported ❤️❤️​

Attachments:

Answers

Answered by Anonymous
6

In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. Group theory is central to many areas of pure and applied mathematics and the classification theorem has been called one of the great intellectual achievements of humanity.[1] The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension problem does not have a unique solution.

Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof.

Hope it helps you.....

Mark as the brainliest if this helps you.....

Thank you.......

Answered by MysteriousAryan
1

Answer:

classification -

In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. Group theory is central to many areas of pure and applied mathematics and the classification theorem has been called one of the great intellectual achievements of humanity..The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension problem does not have a unique solution.

Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof.

Step-by-step explanation:

more info ;-

Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.

Similar questions