Math, asked by amjadkhan4425615, 10 months ago

the co ordinate of the point which divides internally the join of p (2,-1,4) and (4,3,2) in the ratio 2:3 is​

Answers

Answered by Anonymous
28

AnswEr:

Let R (x,y,z) be the required point.

(i) Let R divides PQ internally in the ratio 2:3, Then

 \\  \qquad \sf \: x =  \frac{2 \times 4 + 3 \times 2}{2 + 3}  \\  \\  \\  \qquad \sf \: y =  \frac{2 \times 3 + 3 \times  - 1}{2 + 3}  \\  \\  \\  \qquad \sf \: z =  \frac{2 \times 2 + 3 \times 4}{2 + 3}  \\  \\  \\  \implies \sf \: x =  \frac{14}{5} \:  , \: y =  \frac{3}{5}  \: , \: z =  \frac{16}{5}  \\  \\

So, the coordinates of the points are

 \\  \qquad \sf \: ( \frac{14}{5} , \frac{3}{5} , \frac{16}{5} ) \\  \\

Answered by Anonymous
13

 \huge \fcolorbox{red}{pink}{Solution :)}

Let ,

The coordinate of the point which divides internally the join of p (2,-1,4) and (4,3,2) be R(x,y,z)

We know that , the coordinates of point R which divides the line segment joining the two points P(x1,x2,x3) and Q(x1,x2,x3) internally in the ratio m : n is given by

  \large{ \star} \:  \: \sf \large \fbox{ \frac{mx_{2} + nx_{1}}{m + n} , \frac{my_{2} + ny_{1}}{m + n} ,  \frac{mz_{2} + nz_{1}}{m + n} }

Substitute the known values , we get

 \sf \mapsto (x, y,z) = \frac{2(4) + 3(2)}{2 + 3} , \frac{2(3) + 3( - 1)}{2 + 3} ,  \frac{2(2) + 3(4)}{2 + 3} \\  \\ \sf \mapsto (x, y,z) = \frac{8 + 6}{5} , \frac{6 - 3}{5} , \frac{4 + 12}{5}  \\  \\  \sf \mapsto (x, y,z) = \frac{14}{5} , \frac{3}{5} , \frac{16}{5}

Hence , the required coordinate of R is (14/5 , 3/5 , 16/5)

______________ Keep Smiling ☺

Similar questions