Math, asked by karishma2845, 1 year ago


The co-ordinates of points A, B, C are (x1, yı) (x2, y2) and (x3, y3) and point D d
AB in the ratio l: k. if p divides line DC in the ratio m : (k +l ) then the co-ordinates
of P are​

Answers

Answered by MaheswariS
2

\textbf{Section formula:}

\text{The co ordinates of the point which divides the}

\text{line segment joining $(x_1,y_1)$ and $(x_2,y_2)$ internally in the ratio m:n are}

\boxed{\bf(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})}

\textbf{Given:}

A(x_1,y_1),\;B(x_2,y_2)\;\text{and}\;C(x_3,y_3)

\text{Since D divides AB internally in the ratio l:k,}

\text{the coordinates of D are}

(\dfrac{lx_2+kx_1}{l+k},\dfrac{ly_2+ky_1}{l+k})

\text{Since P divides DC internally in the ratio m : k+l,}

\text{the coordinates of P are}

(\dfrac{mx_3+(k+l)\frac{(lx_2+kx_1}{l+k})}{m+k+l},\dfrac{my_3+(k+l)\frac{(ly_2+ky_1}{l+k})}{m+k+l})

(\dfrac{mx_3+lx_2+kx_1}{m+k+l},\dfrac{my_3+ly_2+ky_1}{m+k+l})

\bf(\dfrac{kx_1+lx_2+mx_3}{k+l+m},\dfrac{ky_1+ly_2+my_3}{k+l+m})

\textbf{Answer:}

\textbf{The co-ordinates of D are}

\bf(\dfrac{kx_1+lx_2+mx_3}{k+l+m},\dfrac{ky_1+ly_2+my_3}{k+l+m})

Find more:

Find the ratio in which the line x+3y-14=0 divides the line segment joining the points A(-2,4) B(3,7).

https://brainly.in/question/1594798

The line segment joining the points (3,-1) and (-6,5) is trisected. find the coordinate of the point of trisection.

https://brainly.in/question/8416219

Similar questions