Math, asked by aarinjisoav, 2 days ago

The co-ordinates of the mid-points of the line joining P(-12,14) and (14,-12) are :
a)(0,0) b) (1,1) c) (1,0) d) (-1,0)

Answers

Answered by ImperialGladiator
32

Answer:

  • b) (1, 1)

Explanation:

Given coordinates,

  • P(-12, 14)
  • Q(14, -12)

Using the midpoint formula,

 =  \bigg(\boldsymbol{\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}} \bigg)

Where,

  • x_1 \: {\rm and}\: y_1 are the coordinates of P.
  • x_2 \: {\rm and}\: y_2 are the coordinates of Q.

Substitute the given coordinates,

 =  \bigg({\dfrac{( - 12) + 14}{2}, \dfrac{14 + ( - 12)}{2}} \bigg)

 =  \bigg({\dfrac{- 12 + 14}{2}, \dfrac{14 - 12}{2}} \bigg)

 =  \bigg({\dfrac{2}{2}, \dfrac{2}{2}} \bigg)

 = (1, \: 1)

Mid-point of the points P and Q is (1, 1).

__________________________

Answered by StarFighter
32

Answer:

Appropriate Question :-

  • The co-ordinates of the mid-point of the line joining P(- 12 , 14) and Q(14 , - 12) are :

Options :

● (a) (0 , 0)

● (b) (1 , 1)

● (c) (1 , 0)

● (d) (- 1 , 0)

\\

Given :-

  • The co-ordinates are P(- 12 , 14) and Q(14 , - 12).

\\

To Find :-

  • What is the mid-point.

\\

Formula Used :-

\clubsuit Mid-Point Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Mid-Point =\: \bigg[\dfrac{x_1 + x_2}{2} , \dfrac{y_1 + y_2}{2}\bigg]}}}\: \: \: \bigstar\\

where,

  • (x₁ , y₁) = Co-ordinates of the first point
  • (x₂ , y₂) = Co-ordinates of the second point

\\

Solution :-

Given Co-ordinates :

\mapsto \bf P(- 12 , 14)

\mapsto \bf Q(14 , - 12)

where,

  • x₁ = - 12
  • y₁ = 14
  • x₂ = 14
  • y₂ = - 12

According to the question by using the formula we get,

\implies \bf Mid-Point =\: \bigg[\dfrac{x_1 + x_2}{2} , \dfrac{y_1 + y_2}{2}\bigg]\\

\implies \sf Mid-Point =\: \bigg[\dfrac{- 12 + 14}{2} , \dfrac{14 + (- 12)}{2}\bigg]\\

\implies \sf Mid-Point =\: \bigg[\dfrac{2}{2} , \dfrac{14 - 12}{2}\bigg]\\

\implies \sf Mid-Point =\: \bigg[\dfrac{\cancel{2}}{\cancel{2}} , \dfrac{\cancel{2}}{\cancel{2}}\bigg]\\

\implies \sf Mid-Point =\: \bigg[\dfrac{1}{1} , \dfrac{1}{1}\bigg]\\

\implies \sf Mid-Point =\: [1 , 1]\\

\implies \sf\bold{\red{Mid-Point =\: (1 , 1)}}\\

\sf\bold{\purple{\underline{\therefore\: The\: mid-point\: is\: (1 , 1)\: .}}}\\

Hence, the correct options is option no (b) (1 , 1) .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

\clubsuit Distance Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Distance =\: \sqrt{\bigg(x_2 - x_1\bigg)^2 + \bigg(y_2 - y_1\bigg)^2}}}}\: \: \: \bigstar\\

\clubsuit Section Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Section =\: \bigg\lgroup \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} , \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\bigg\rgroup}}}\: \: \: \bigstar\\

\clubsuit Centroid Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Centroid =\: \bigg\lgroup \dfrac{x_1 + x_2 + x_3}{3} , \dfrac{y_1 + y_2 + y_3}{3}\bigg\rgroup}}}\: \: \: \bigstar\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions