Math, asked by jitesh8540, 6 months ago

The co-ordinates of the point at which xz-plane divides the line joining A(-2,3,4) and B(1,2,3) is​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{The line joining A(-2,3,4) and B(1,2,3) meets xz-plane}

\underline{\textbf{To find:}}

\textsf{The co ordinates of the point where the line joining}

\textsf{A and B meets xz-plane}

\underline{\textbf{Solution:}}

\textsf{The equation of the line joining A(-2,3,4) and B(1,2,3) is}

\mathsf{\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}}

\mathsf{\dfrac{x+2}{1+2}=\dfrac{y-3}{2-3}=\dfrac{z-4}{3-4}}

\mathsf{\dfrac{x+2}{3}=\dfrac{y-3}{-1}=\dfrac{z-4}{-1}}

\mathsf{It\;meets\;xz\;plane\;\implies\;y=0}

\mathsf{\dfrac{x+2}{3}=\dfrac{0-3}{-1}=\dfrac{z-4}{-1}}

\mathsf{\dfrac{x+2}{3}=3=\dfrac{z-4}{-1}}

\mathsf{\dfrac{x+2}{3}=3}

\mathsf{x+2=9}

\mathsf{x=9-2}

\mathsf{x=7}

\mathsf{and}

\mathsf{\dfrac{z-4}{-1}=3}

\mathsf{z-4=-3}

\mathsf{z=4-3}

\mathsf{z=1}

\therefore\textsf{The point of intersection is (7,0,1)}

\underline{\textbf{Find more:}}

In what ratio does the x- axis divide the line segment joining A(5,6) and B (2,-8)?​  

https://brainly.in/question/13579888

Answered by vl8408343
0

Answer:

(7,0,1)Point of intersection...

Step-by-step explanation:

hope it helps....i got it like this..

Attachments:
Similar questions