Math, asked by Anonymous, 8 months ago

The coach of a cricket team buys 7 bats and 6 balls for Rs.3800. Later, she buys 3 bats and 5 balls for Rs.1750. Find the cost of each bat and each ball.​

Answers

Answered by MrDRUG
0

Let the cost of a bat be x and the cost of a ball be y.

According to the question,

7x + 6y = 3800 ………………. (i)

3x + 5y = 1750 ………………. (ii)

From (i), we get;

y = (3800 – 7x)/6 …………………… (iii)

Substituting (iii) in (ii). we get,

3x + 5[(3800 – 7x)/6] = 1750

⇒3x + (9500/3) – (35x/6) = 1750

3x – (35x/6) = 1750 – (9500/3)

(18x – 35x)/6 = (5250 – 9500)/3

⇒-17x/6 = -4250/3

⇒-17x = -8500

x = 500

Putting the value of x in (iii), we get;

y = (3800 – 7 × 500)/6 = 300/6 = 50

Hence, the cost of a bat is Rs 500 and cost of a ball is Rs 50.

Answered by Anonymous
1

Solution :-

Let the cost of each bat be = Rs x                  

Let the cost of each ball be = Rs y      

           

According to the Question,

⇒ 7x + 6y = 3800                  

⇒ 6y = 3800 - 7x                  

Dividing by 6, we get                  

⇒ y = (3800 - 7x)/6 … (i)  

                     

⇒ 3x + 5y = 1750                  

Putting the value of y                  

⇒ 3x + 5 ((3800 - 7x)/6) = 1750                  

Multiplying by 6, we get                  

⇒ 18x + 19000 - 35x = 10500                  

⇒ -17x =10500 - 19000                  

⇒ -17x = - 8500                  

⇒ x = - 8500/-17                  

⇒ x = 500  

               

Putting this value in equation (i) we get                  

⇒ y = ( 3800 - 7 × 500)/6                  

⇒ y = 300/6                  

⇒ y = 50    

             

Hence the cost of each bat = Rs 500 and the cost of each balls = Rs 50.

Similar questions