Math, asked by Mister360, 2 months ago

The coach of a cricket team buys 7 bats and 6 balls for Rs.3800. Later, she buys 3 bats and 5 balls for Rs.1750. Find the cost of each bat and each ball.

Answers

Answered by Anonymous
39

Given

  • 7 bats and 6 balls for Rs.3800
  • 3 bats and 5 balls for Rs.1750

Explanation

Let the Price of a bat be x and Price of a ball be y as:

According to Question,

The Equations be like as:-

 {\pmb{\sf{ 7x+6y = 3800 \ \ \ \ \ \ \ \cdots(1) }}} \\ {\pmb{\sf{ 3x+5y = 1750 \ \ \ \ \ \ \ \cdots(2) }}} \\

✮ Now, We have to Equalise both Equations as to compare ,We have to Multiply Eq.(1) with 3 and Eq.(2) with 7 so We've :-

 \circ {\boxed{\sf{ 21x+18y = 11400 \ \ \ \ \ \ \ \cdots(1) }}} \\ \\ \circ {\boxed{\sf{ 21x+35y = 12250 \ \ \ \ \ \ \ \cdots(2) }}} \\

✮ Now, We can Equalising both Equations;

 \begin{cases} {\pmb{\sf{ \ \ \cancel{21x} +18y = 11400  }}} \\  {\pmb{\sf{ \cancel{ - 21x} -35y = -12250 }}} \\ \\ {\pmb{\boxed{\sf{ \ \ \ -17y = -850}}}}  \\ \end{cases}

✮After Calculating, we've

 \colon\implies{\sf{ \cancel{-} \ 17y = \cancel{-} \ 850 }} \\ \\ \\ \colon\implies{\sf{ \cancel{17} y = \cancel{850} }} \\ \\ \\ \colon\implies{\sf{ y = 50 }} \\

Therefore, Price of a ball is 50 /Piece.

✮Now, By Putting value of y in any equation to get the value of ' x ' as:-

 \colon\implies{\sf{ 7x+6y = 3800 }} \\ \\ \\ \colon\implies{\sf{ 7x+ 6 \times 50 = 3800 }} \\ \\ \\ \colon\implies{\sf{ 7x + 300 = 3800  }} \\ \\ \\ \colon\implies{\sf{ 7x = 3800-300}} \\ \\ \\ \colon\implies{\sf{ 7x = 3500 }} \\ \\ \\ \colon\implies{\sf{ x = \cancel{ \dfrac{3500}{7} } }} \\ \\ \\ \colon\implies{\sf\purple{ x = Rs. \ 500 }} \\

Hence,

  • Cost of a Bat is 500
  • Cost of a Ball is 50
Similar questions