the coach of a cricket team buys 7 bats and 6 balls for Rs. 3800. Later he buys 3 bats and 5 balls for Rs. 1750.find the cost of each bat and each ball.
Answers
Let Cost of 1 bat=₹x
Let Cost of 1 ball=₹y
Now 7 bats and 6 balls cost ₹3800
Cost of 7 bats=₹7x
Cost of 6 balls=₹6y
Now 3 bats and 5 balls cost=₹1750
Cost of 3 bats=₹3x
Cost of 5 balls=₹5y
Y=50
We know
3x+5y=1750
3x+5×50=1750
3x+250=1750
3x=1750-250
3x=1500
x=1500/3
x=500
Y is cost of 1 ball=₹50
X is cost of 1 bat=₹500
Let Cost of 1 bat=₹x
Let Cost of 1 ball=₹y
Now 7 bats and 6 balls cost ₹3800
Cost of 7 bats=₹7x
Cost of 6 balls=₹6y
\begin{lgathered}7x + 6y = 3800 \\ \\ 7x = 3800 - 6y \\ \\ x = \frac{3800 - 6y}{7}\end{lgathered}
7x+6y=3800
7x=3800−6y
x=
7
3800−6y
Now 3 bats and 5 balls cost=₹1750
Cost of 3 bats=₹3x
Cost of 5 balls=₹5y
\begin{lgathered}3x + 5y = 1750 \\ \\ x = \frac{3800 - 6y}{7} \\ \\ 3( \frac{3800 - 6y}{7} ) + 5y = 1750 \\ \\ \frac{11400}{7} - \frac{18y}{7} + 5y = 1750 \\ \\ - \frac{18y}{7} + 5y = 1750 - \frac{11400}{7} \\ \\ \frac{ - 18y + 5y \times 7}{7} = \frac{1750 \times 7 - 11400}{7} \\ \\ \frac{ - 18y + 35 y }{7} = \frac{12250 - 11400}{7} \\ \\ \frac{17y}{7} = \frac{850}{7} \\ \\ y = \frac{850}{7} \times \frac{7}{17} \\ \\ y = 50\end{lgathered}
3x+5y=1750
x=
7
3800−6y
3(
7
3800−6y
)+5y=1750
7
11400
−
7
18y
+5y=1750
−
7
18y
+5y=1750−
7
11400
7
−18y+5y×7
=
7
1750×7−11400
7
−18y+35y
=
7
12250−11400
7
17y
=
7
850
y=
7
850
×
17
7
y=50
Y=50
We know
3x+5y=1750
3x+5×50=1750
3x+250=1750
3x=1750-250
3x=1500
x=1500/3
x=500
Y is cost of 1 ball=₹50
X is cost of 1 bat=₹500