Physics, asked by Harshsukhija4720, 1 year ago

The coefficient of apparent expansion of mercury in a glass vessel is 153 × 10⁻⁶/°C and in a steel vessel is 144 × 10⁻⁶/°C. If a for steel is 12 × 10⁻⁶/°C, then, that of glass is(a) 9 × 10⁻⁶/°C(b) 6 × 10⁻⁶/°C(c) 36 × 10⁻⁶/°C(d) 27 × 10⁻⁶/°C

Answers

Answered by lidaralbany
34

Answer: (a). The value of a for glass is a_{glass} = 9\times10^{-6}/^{o}C.

Explanation:

Given that,

Coefficient of apparent expansion of mercury in a glass vessel \alpha_{g} = 153\times10^{-6}/^{o}C

Coefficient of apparent expansion of mercury in a steel vessel \alpha_{s} = 144\times10^{-6}/^{o}C

The value of a for steel a_{s} = 12\times10^{-6}/^{o}C

We know that,

\alpha_{real} = \alpha_{app}+\alpha_{vessel}

So, for glass and steel

(\alpha_{app}+\alpha_{vessel})_{glass} = (\alpha_{app}+\alpha_{vessel})_{steel}

Where, \alpha_{vessel} = 3a

(\alpha_{app}+3a)_{glass} = (\alpha_{app}+3a})_{steel}

(153\times10^{-6}/^{o}C +3a)_{glass} = (144\times10^{-6}/^{o}C+3\times 12\times10^{-6}/^{o}C})_{steel}

3a_{glass} = 144\times10^{-6}/^{o}C +36\times10^{-6}/^{o}C - 153\times10^{-6}/^{o}C

a_{glass} = 9\times10^{-6}/^{o}C

Hence, the value of a for glass is a_{glass} = 9\times10^{-6}/^{o}C.

Similar questions