Math, asked by StrongGirl, 7 months ago

the coefficient of term independent of x in the expansion of
( \frac{3 {x}^{2} }{2}  -  \frac{1}{3x} )^{9}
is λ then 18 λ is ?
9
7
6
4 ​

Answers

Answered by shadowsabers03
6

The term independent of x in the expansion of \left(ax^p+\dfrac{b}{x^q}\right)^n is,

\longrightarrow T_{r+1}=\,^n\!C_r\ a^{n-r}\ b^r

where r=\dfrac{pn}{p+q}.

According to the question,

  • a=\dfrac{3}{2}
  • p=2
  • b=-\dfrac{1}{3}
  • q=1
  • n=9

Then,

\longrightarrow r=\dfrac{pn}{p+q}

\longrightarrow r=\dfrac{2\times9}{2+1}

\longrightarrow r=6

Then, term independent of x is,

\longrightarrow T_7=\,^9\!C_6\ \left(\dfrac{3}{2}\right)^{9-6}\ \left(-\dfrac{1}{3}\right)^6

\longrightarrow\lambda=84\times\dfrac{3^3}{2^3}\times\dfrac{1}{3^6}

\longrightarrow\lambda=7\times\dfrac{1}{18}

\longrightarrow\underline{\underline{18\lambda=7}}

Hence 7 is the answer.

Similar questions