Math, asked by bfestuz10, 1 month ago

the coefficient of the 5th, 6th and 7th terms in a binomial expansion of (1+x)^n in ascending powers of x are consecutive terms in a linear sequence. Find the possible values of n​

Answers

Answered by esuryasinghmohan
1

Answer:

Step-by-step explanation:

given :

  • the coefficient of the 5th, 6th and 7th terms in a binomial expansion of (1+x)^n in ascending powers of x are consecutive terms in a linear sequence. Find the possible values of n

to find :

  • Find the possible values of n

solution :

  • hence,the answer is 7
Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given expansion is

\red{\rm :\longmapsto\: {(1 + x)}^{n}}

We know,

 \sf \:The \: coefficient \: of \:   {(r + 1)}^{th} \: term \: of \:  {(1 + x)}^{n}  =  \: ^nC_r

So,

\red{\rm :\longmapsto\:Coefficient \: of \:  {5}^{th} \: term \:  =  \: ^nC_4}

\red{\rm :\longmapsto\:Coefficient \: of \:  {6}^{th} \: term \:  =  \: ^nC_5}

\red{\rm :\longmapsto\:Coefficient \: of \:  {7}^{th} \: term \:  =  \: ^nC_6}

Since, the coefficient of the 5th, 6th and 7th terms in a binomial expansion of (1+x)^n in ascending powers of x are consecutive terms in a linear sequence.

Its mean coefficient of 5th, 6th and 7th terms form an AP series.

We know,

  • If a, b, c are in AP, then 2b = a + c.

So,

\rm \implies\:2^nC_5  \: =  \: ^nC_4 \:  +  \: ^nC_6

\rm :\longmapsto\:2\dfrac{n!}{5! \: (n - 5)!}  = \dfrac{n!}{4! \: (n - 4)!}  + \dfrac{n!}{6! \: (n - 6)!}

\rm :\longmapsto\:\dfrac{2}{5.4! \: (n - 5)(n - 6)!}  = \dfrac{1}{4! \: (n - 4)(n - 5)(n - 6)!}  + \dfrac{n!}{6.5.4! \: (n - 6)!}

\rm :\longmapsto\:\dfrac{2}{5(n - 5)}  = \dfrac{1}{(n - 4)(n - 5)}  + \dfrac{1}{30}

\rm :\longmapsto\:\dfrac{2}{5(n - 5)} -  \dfrac{1}{(n - 4)(n - 5)} = \dfrac{1}{30}

\rm :\longmapsto\:  \dfrac{2( n - 4) - 5}{5(n - 4)(n - 5)} = \dfrac{1}{30}

\rm :\longmapsto\:  \dfrac{2n - 8- 5}{(n - 4)(n - 5)} = \dfrac{1}{6}

\rm :\longmapsto\:  \dfrac{2n - 13}{ {n}^{2}  - 9n + 20} = \dfrac{1}{6}

\rm :\longmapsto\: {n}^{2} - 9n + 20 = 12n - 78

\rm :\longmapsto\: {n}^{2} - 9n + 20 -  12n  + 78 = 0

\rm :\longmapsto\: {n}^{2} - 21n + 98 = 0

\rm :\longmapsto\: {n}^{2} - 14n - 7n + 98 = 0

\rm :\longmapsto\:n(n - 14) - 7(n - 14) = 0

\rm :\longmapsto\:(n - 14)(n - 7) = 0

\bf\implies \:n = 14 \:  \: or \:  \: n = 7

Similar questions