Math, asked by wwwamanmomincom, 3 months ago

the coefficient of x^2 in the expansion of the cos 2x​

Answers

Answered by mudavathanjali825
0

Answer:

Correct option is

C

45

2

We have to find the coefficient of third term in Maclaurin series of sin

2

x.

The Maclaurin series is given by f(x)=∑

k=0

k!

f

(k)

(a)

x

k

where a=0

We have f(x)=sin

2

x

Since we have to find the coefficient of the third term, let us take n=8.

∴f(x)≈∑

k=0

8

k!

f

(k)

(0)

x

k

f

(0)

(x)=sin

2

x,⇒f

(0)

(0)=0

f

(1)

(x)=2sinxcosx,⇒f

(1)

(0)=0

f

(2)

(x)=−2sin

2

x+2cos

2

x,⇒f

(2)

(0)=2

f

(3)

(x)=−8cosxsinx,⇒f

(3)

(0)=0

f

(4)

(x)=8sin

2

x−8cos

2

x,⇒f

(4)

(0)=−8

f

(5)

(x)=32sinxcosx,⇒f

(5)

(0)=0

f

(6)

(x)=−32sin

2

x+32cos

2

x,⇒f

(6)

(0)=32

f

(7)

(x)=−128sinxcosx,⇒f

(7)

(0)=0

f

(8)

(x)=128sin

2

x−128cos

2

x,⇒f

(8)

(0)=−128

∴f(x)≈0x

0

+0x

1

+

2!

2

x

2

+

3!

0

x

3

+

4!

−8

x

4

+

5!

0

x

5

+

6!

32

x

6

+

7!

0

x

7

+

8!

−128

x

8

⇒f(x)≈x

2

3

1

x

4

+

45

2

x

6

135

1

x

5

Thus the coefficient of third term is

45

2

Similar questions