Math, asked by Usaha65ambitious, 9 months ago

The coefficient of x2 in the expansion of (x2+2x+3)2+(x2−2x+3)2 is (a)10 (b) 20 (c)−10 (d)−20

Answers

Answered by MaheswariS
14

\textbf{Given:}

(x^2+2x+3)^2+(x^2-2x+3)^2

\textbf{To find:}

\text{Coefficient of $x^2$ in the expansion of $(x^2+2x+3)^2+(x^2-2x+3)^2$}

\textbf{Solution:}

\text{Consider,}

(x^2+2x+3)^2+(x^2-2x+3)^2

\text{Using the identity,}

\boxed{\bf(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}

=x^4+4x^2+9+4x^3+12x+6x^2+x^4+4x^2+9-4x^3-12x+6x^2

=x^4+4x^2+9+6x^2+x^4+4x^2+9+6x^2

=2\,x^4+8\,x^2+18+12\,x^2

=2\,x^4+20\,x^2+18

\therefore\textbf{Coefficient of $\bf\,x^2$ is 20}

\textbf{Answer:}

\textbf{Option (b) is correct}

Answered by ajjubhai94acc
1

Step-by-step explanation:

Solution:

Consider,

(x^2+2x+3)^2+(x^2-2x+3)^2(x

2

+2x+3)

2

+(x

2

−2x+3)

2

Using the identity

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}

(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ca

=x^4+4x^2+9+4x^3+12x+6x^2+x^4+4x^2+9-4x^3-12x+6x^2=x

4

+4x

2

+9+4x

3

+12x+6x

2

+x

4

+4x

2

+9−4x

3

−12x+6x

2

=x^4+4x^2+9+6x^2+x^4+4x^2+9+6x^2=x

4

+4x

2

+9+6x

2

+x

4

+4x

2

+9+6x

2

=2\,x^4+8\,x^2+18+12\,x^2=2x

4

+8x

2

+18+12x

2

=2\,x^4+20\,x^2+18=2x

4

+20x

2

+18

{Coefficient of $\bf\,x^2$ is 20}∴Coefficient of x^2 is 20

Similar questions