Physics, asked by shibanidash8119, 9 months ago

The combined mass of a race car and its driver is 600 kg. Travelling at constant speed, the car completes one lap around a circular track of radius 160 m in a total time of 36 s. What is the magnitude of the centripetal acceleration of the car? (π = 3.142)

Answers

Answered by BrainlyConqueror0901
20

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Centripetal\:acceleration=2.5\:m/s^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}  \\ \tt:  \implies Mass \: of \: car(m)= 600 \: kg  \\ \\  \tt:  \implies Radius \: of \: circular \: track(r)= 160 \: m \\  \\  \tt:  \implies Time(t) = 36 \: sec \\  \\  \red{\underline \bold{To \: find:}}  \\  \tt :\implies Centripetal \: acceleration(  a _{c}) =?

• According to given question :

 \tt \circ \: Acceleration = 0 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies 2\pi r = u \times 36  +  \frac{1}{2}  \times 0 \times  {36}^{2}  \\  \\ \tt:  \implies  \frac{2\pi  \times 160}{36}  = u \\  \\  \green{\tt:  \implies u =  \frac{320\pi}{36} =v}  \\  \\  \bold{For \: centripetal \: acceleration :} \\ \tt:  \implies  a_{c} =  \frac{ {v}^{2} }{r}  \\  \\ \tt:  \implies a_{c} = \frac{ (\frac{320\pi}{36})^{2} }{320}  \\  \\ \tt:  \implies a_{c} =  \frac{320 \times 320 \times  {\pi}^{2} }{ {36}^{2}  \times 320}  \\\\ \tt\circ\:\pi^{2}=10\\  \\ \tt:  \implies a_{c} = \frac{320 \times 10}{1296}  \\  \\ \tt:  \implies a_{c} = \frac{3200}{1296}  \\  \\  \green{\tt:  \implies a_{c} =2.5 \: m/{s}^{2} } \\  \\  \green{\tt \therefore Centripetal \: acceleration \: is \: 2.5 \: m/{s}^{2} }

Similar questions