Math, asked by StrongGirl, 9 months ago

The common tangent of curves x² = 4y and y² = 4x also touches the curve x² + y² = c². then find value of c²?

Attachments:

Answers

Answered by amansharma264
5

ANSWER.

=> value of c² = ½

EXPLANATION.

 \sf \to \: common \: tangent \: to \: the \: curve \:  {x}^{2} = 4y \:  \: and \:  \:  {y}^{2}   = 4x \\  \\  \sf \to \: touches \: the \: curve \:  =  {x}^{2} +  {y}^{2}   =  {c}^{2}

To find the value of c².

 \sf \to \:  {y}^{2} = 4x \\  \\  \sf \to \: equation \: of \: tangent \:  = y = mx +  \dfrac{a}{m} \\  \\  \sf \to \:  {x}^{2} = 4y \\  \\  \sf \to \: equation \: of \: tangent \:  = y = mx - a {m}^{2}

  \sf \to \: {y}^{2}  = 4x \:  \implies \: y = mx +  \dfrac{1}{m} \:  \: ....(1) \\  \\  \sf \to \: x {}^{2}   = 4y \implies \: y \:  = mx -  {m}^{2} .....(2)

 \sf \to \: compare \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \: get \\  \\  \sf \to \:  \dfrac{1}{m}  =  -  {m}^{2}  \\  \\  \sf \to \:  {m}^{3} =  - 1 \\  \\  \sf \to \: m \:  =  - 1

 \sf \to \: equation \: of \: tangent \:  = y =  ( - 1)x  - 1 \\  \\  \sf \to \: x \:  + y + 1 = 0 \\  \\  \sf \to \: \: it \: lies \: on \: the \: point \: (0 \: 0) \\  \\  \sf \to \:  | \frac{1}{ \sqrt{1 + 1} } |  = c \\  \\  \sf \to \:  {c}^{2}  =  \dfrac{1}{2}

Similar questions