Math, asked by harshsg5637, 12 hours ago

The common tangents to the circle x2+y2=2 and the parabola y2=8x

Answers

Answered by vikkiain
0

the \:  \: common \:  \: tangents \:  \: at \:  \:  x =  - 4

Step-by-step explanation:

given \\ circle \:  \:  {x}^{2}  +  {y}^{2}  = 2   \:  \: and \:  \:  {y}^{2}  = 8x \\ we \:  \: know \:  \: that \\ \boxed{ tan \theta =  \frac{dy}{dx} } \\ now \:  \:   for \:  \: tangent \:  \: of \: circle \\  {x}^{2}  +  {y}^{2}  = 2 \\ Differentiating  \:  \: with  \:  \: respect \:  \:  to \:  \:  x, \\ 2x + 2y \frac{dy}{dx}  = 0 \\  x + y\frac{dy}{dx}  = 0 \\  \frac{dy}{dx}  =  \frac{ - x}{y}  \\ again \:  \: for \:  \: tangent \:  \: of \: \: parabola \\  {y}^{2}  = 8x \\ Differentiating \:  \:  with  \:  \: respect \:  \:  to \:  \:  x, \\ 2y \frac{dy}{dx}  = 8 \\  \frac{dy}{dx}  =  \frac{4}{y}  \\ now \:  \: A/Q, \\  \frac{ - x}{y}  =  \frac{4}{y}  \\ x =  - 4 \\ the \:  \: common \:  \: tangents \:  \: at \:  \:  x =  - 4

Similar questions