Math, asked by Aayush94721, 4 months ago

The complex number (2i/1+I)^1/6 is equivalent is a)12√2 cos (π/24) b)12√2 cis (25π/24) c)(1+I)^1/6 d) All of the above

Answers

Answered by senboni123456
13

Step-by-step explanation:

We have,

z =  \left(  \dfrac{2i}{1 + i} \right)^{ \frac{1}{6} }

 \implies \: z =  \left \{\dfrac{2i \left(1 - i \right)}{\left(1  +  i \right)\left(1 - i \right)} \right \}^{ \frac{1}{6} }

 \implies \: z =  \left \{\dfrac{2i \left(1 - i \right)}{\left(1  \right)^{2} +  \left(1\right)^{2} } \right \}^{ \frac{1}{6} }

 \implies \: z =  \left \{\dfrac{2i \left(1 - i \right)}{2} \right \}^{ \frac{1}{6} }

 \implies \: z =  \left \{i \left(1 - i \right) \right \}^{ \frac{1}{6} }

 \implies \: z =  \left(i  -  {i}^{2}   \right)^{ \frac{1}{6} }

 \implies \: z =  \left(i   + 1   \right)^{ \frac{1}{6} }

 \implies \: z =  \left(1 + i    \right)^{ \frac{1}{6} }

 \implies \: z =  \left \{ \sqrt{2}  \left( \dfrac{1}{ \sqrt{2} } +  \dfrac{i}{ \sqrt{2} }   \right)  \right \}^{ \frac{1}{6} }  \\

 \implies \: z =   \sqrt[12]{2}  \left( \dfrac{1}{ \sqrt{2} } +  \dfrac{i}{ \sqrt{2} }   \right)^{ \frac{1}{6} }  \\

 \implies \: z =   \sqrt[12]{2}  \left \{ \cos \left(\dfrac{\pi}{ 4 } \right) + i \sin  \left(\dfrac{\pi}{ 4 }   \right) \right \}^{ \frac{1}{6} }  \\

 \implies \: z =   \sqrt[12]{2}  \left \{  {e}^{i \frac{\pi}{4} }  \right \}^{ \frac{1}{6} }  \\

 \implies \: z =   \sqrt[12]{2}   \cdot{e}^{i \frac{\pi}{4} \cdot\frac{1}{6} }   \\

 \implies \: z =   \sqrt[12]{2}   \cdot{e}^{i \frac{\pi}{24} }   \\

 \implies \: \tt{ z =   \sqrt[12]{2}   \cdot  cis\left(\frac{\pi}{24}  \right) }  \\

Similar questions