Physics, asked by padmajamurala48, 10 months ago

The components of a = 2î +3j along
the direction of vector (î + j^)
is​

Answers

Answered by shadowsabers03
6

Let \vec{\sf{a}}=\sf{2\hat i+3\^j} and \vec{\sf{b}}=\sf{\hat i+\^j.}

Let \theta be the angle between \vec{\sf{a}} and \vec{\sf{b}}.

So the component of \vec{\sf{a}} along \vec{\sf{b}} is,

\longrightarrow\vec{\sf{a_b}}=\sf{a\cos\theta\,\^b\quad\quad\dots(1)}

But,

\longrightarrow\vec{\sf{a}}\cdot\vec{\sf{b}}=\sf{ab\cos\theta}

\longrightarrow\mathsf{\cos\theta}=\dfrac{\vec{\sf{a}}\cdot\vec{\sf{b}}}{\sf{ab}}

Then (1) becomes,

\longrightarrow\vec{\sf{a_b}}=\mathsf{a}\cdot\dfrac{\vec{\sf{a}}\cdot\vec{\sf{b}}}{\sf{ab}}\ \sf{\^b}

\longrightarrow\vec{\sf{a_b}}=\dfrac{\vec{\sf{a}}\cdot\vec{\sf{b}}}{\sf{b}}\ \sf{\^b}

\longrightarrow\vec{\sf{a_b}}=\sf{\dfrac{\left(2\hat i+3\^j\right)\cdot\left(\hat i+\^j\right)}{\sqrt{1^2+1^2}}\left(\dfrac{\hat i+\hat j}{\sqrt{2}}\right)}

\longrightarrow\vec{\sf{a_b}}=\sf{\dfrac{2+3}{\sqrt{1+1}}\left(\dfrac{\hat i+\hat j}{\sqrt{2}}\right)}

\longrightarrow\vec{\sf{a_b}}=\sf{\dfrac{5}{\sqrt{2}}\left(\dfrac{\hat i+\hat j}{\sqrt{2}}\right)}

\longrightarrow\vec{\sf{a_b}}=\sf{\dfrac{5}{2}\left(\hat i+\hat j\right)}

\longrightarrow\underline{\underline{\vec{\sf{a_b}}=\sf{\dfrac{5}{2}\,\hat i+\dfrac{5}{2}\,\hat j}}}

Similar questions