Physics, asked by xyz1234561, 7 months ago

The components of a vector A=2i-3j along the vector i+j ?
a)5
b)5/√2
c) 10√2
d) -1/√2​

Answers

Answered by Anonymous
53

Given:

 \rm \overrightarrow{A} = 2 \hat{i} - 3 \hat{j}

 \rm \overrightarrow{B} =  \hat{i}   +  \hat{j}

To Find:

Component of  \sf  \overrightarrow{A} along  \sf  \overrightarrow{B}

Answer:

Magnitude of  \sf  \overrightarrow{A} &  \sf  \overrightarrow{B} :

 \rm  | \overrightarrow{A} |  = \sqrt{ {2}^{2} +  {3}^{2}  }  \\  \\  \rm A =  \sqrt{4 + 9}  \\  \\ \rm A =  \sqrt{13}  \\  \\   \\ \rm  | \overrightarrow{B} |  = \sqrt{ {1}^{2} +  {1}^{2}  }  \\  \\  \rm B =  \sqrt{1 + 1}  \\  \\ \rm B =  \sqrt{2}

Dot product of  \sf  \overrightarrow{A} &  \sf  \overrightarrow{B} :

 \rm \overrightarrow{A}. \overrightarrow{B} = (2 \hat{i} - 3 \hat{j})( \hat{i}   +  \hat{j}) \\  \\  \rm \overrightarrow{A}. \overrightarrow{B} =2 - 3 \\  \\  \rm \overrightarrow{A}. \overrightarrow{B} = - 1

Suppose θ is the angle between the vectors.

The component of  \sf  \overrightarrow{A} along  \sf  \overrightarrow{B} is A cosθ.

Thus,

 \rm \implies  \overrightarrow{A}. \overrightarrow{B} =AB \: cos \theta \\  \\  \rm \implies  A \: cos \theta =  \dfrac{ \overrightarrow{A}. \overrightarrow{B}}{B}  \\  \\  \rm \implies  A \: cos \theta =   -  \dfrac{1}{ \sqrt{2} }

 \therefore Component of  \sf  \overrightarrow{A} along  \sf  \overrightarrow{B} =  \rm -  \dfrac{1}{ \sqrt{2} }

Correct Option:  \boxed{\mathfrak{(d) \ -  \dfrac{1}{ \sqrt{2} } }}

Answered by emily364
20

Acosθ = vecA.vecB/B

= (2i-3j)(i+j)/√1²+1²

= 2-3/√1+1

=-1/√2

Similar questions