Math, asked by loveraja9663, 9 months ago

The compound interest, calculated yearly on a certain sum of money for the 2nd year is Rs 880 & for the 3rd year it is Rs 968. Calculate the rate of interest & the original money.

Answers

Answered by TheVenomGirl
63

GiVen:

  • CI for 2nd year = Rs 880
  • CI for 3rd year = Rs 968

So,

SI for Rs 880 per year = 968 - 880 = 88

━━━━━━━━━━━━━━━━

AnSwer:

★ Rate of interest = 88 × 100/ 880×1 = 10 %

Let original money be x.

Now,

★ Amt. after 2 years - Amt. after 1 year = CI for 2nd year.

\sf \implies \: x {(1 +  \dfrac{10}{100} )}^{2}  - (1 +  \dfrac{10}{100}) = 880 \\  \\ \sf \implies \:  x\bigg \{ ({ \dfrac{11}{10} )}^{2}  -  \dfrac{11}{10}\bigg \} = 880 \\  \\ \sf \implies \: x \bigg \{ \frac{121}{100}  -  \dfrac{11}{10} \bigg \} = 880 \\  \\ \sf \implies \:x \times  \dfrac{11}{100} = 880 \\  \\  \sf \implies \:x = 8000

Therefore, rate of interest is 10 % and original money is Rs 8000.

━━━━━━━━━━━━━━━━

Answered by SarcasticL0ve
27

GivEn:-

  • Compound Interest for 2nd year = Rs. 880

  • Compound Interest for 3rd year = Rs. 968

To find:-

  • Rate of interest and the original money.

SoluTion:-

\therefore S.I. on Rs. 880 for one year = Rs. 968 - Rs. 880 = Rs. 88

As we know that,

\dag\;{\underline{\boxed{\bf{\red{S.I. = \dfrac{P \times R \times T}{100}}}}}}

Now, Substituting values in above formula -

:\implies\sf 88 = \dfrac{880 \times R \times 1}{100}

:\implies\sf \dfrac{88 \times 100}{880 \times 1} = R

:\implies\sf \cancel{ \dfrac{8800}{880}} = R

:\implies {\underline{\bf{\blue{R = 10 \%}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Lets the original money be Rs. P

✠ C.I. for second year = Amount after 2 years - Amount after 1 year

:\implies\sf 880 = P \bigg( 1 + \dfrac{10}{100} \bigg)^2 - P \bigg( 1 + \dfrac{10}{100} \bigg)^1

:\implies\sf 880 = P \bigg[ \bigg( \dfrac{11}{10} \bigg)^2 - \dfrac{11}{10} \bigg]

:\implies\sf 880 = P \bigg( \dfrac{121}{100}  - \dfrac{11}{10} \bigg)

:\implies\sf 880 = P \times \dfrac{11}{100}

:\implies\sf 880 \times 100 = P \times 11

:\implies\sf 88000 = P \times 11

:\implies\sf \cancel{ \dfrac{88000}{11}} = P

:\implies {\underline{\bf{\blue{P = 8000}}}}

\therefore The rate of interest = 10% and,

\therefore The original money = Rs. 8000.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\boxed{\begin{minipage}{7 cm}\boxed{\underline{\underline{\bigstar\:\bf\:Extra\:Brainly\:knowlegde\:\bigstar}}}\\\\1) Profit = SP - CP\\\\2) Loss = CP - SP\\\\3) Profit\% = (Profit in Rs.)*100/CP\\\\4) Loss\% = (Loss in Rs.)*100/CP\\\\5) SP = CP*(100+P\%)/100\\\\6) SP = CP*(100-L\%)/100\\\\7) CP = SP*100/(100+P\%)\\\\8) CP = SP*100/(100-L\%)\\\\9) Discount =MP - SP\\\\10) Discount\%=(Discount in Rs.)*100/MP\\\\11) SP = MP*(100-D\%)/100\\\\12) MP = SP*100/(100-D\%)\\\\\end{minipage}}

Similar questions