Math, asked by anitadevi31982, 2 months ago

The compound interest on 1000 at 10% p.a. compounded annually for 2 years is​

Answers

Answered by TwilightShine
13

Answer :-

  • The compound interest is 210.

To find :-

  • The compound interest.

Step-by-step explanation :-

  • Before finding the compound interest, let's find the amount!

We know that :-

  \underline{ \boxed{\rm Amount = Principal  \left(1 + \dfrac{Rate}{100}  \right)^{Time} }}

Here,

  • Principal = 1000.
  • Rate = 10% p.a.
  • Time = 2 years.

Therefore,

 \longrightarrow\sf Amount = 1000 \left(1 +  \dfrac{1\!\!\!\not0}{10\!\!\!\not0}  \right)^{2}

 \longrightarrow\sf Amount = 1000 \left( 1 + \dfrac{1}{10}  \right)^{2}

 \longrightarrow\sf Amount = 1000 \left( \dfrac{1 \times 10 + 1 \times 1}{10}  \right)^{2}

 \longrightarrow\sf Amount = 1000 \left( \dfrac{10 + 1}{10}  \right)^{2}

 \longrightarrow\sf Amount = 1000 \left( \dfrac{11}{10}  \right)^{2}

 \longrightarrow\sf Amount = 1000 \times  \dfrac{11}{10}  \times  \dfrac{11}{10}

 \longrightarrow\sf Amount = \cancel{\dfrac{1210000}{100}}

 \longrightarrow\sf Amount = 1210

-----------------------------------------------------------

  • Now, let's find the compound interest!

We know that :-

  \underline{ \boxed{\rm CI = Amount - Principal}}

Where,

  • CI = Compound Interest.

Here,

  • Amount = 1210.
  • Principal = 1000.

Therefore,

 \dashrightarrow\bf CI = 1210 - 1000

 \dashrightarrow\bf CI = 210

 \\

Hence :-

  • The compound interest is 210.

_____________________________

Answered by Anonymous
83

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➳ Principal = Rs.1000
  • ➳ Rate of Interest = 10% p.a.
  • ➳ Time = 2 years

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➳ Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using Formulae :}}}}}}\end{gathered}

\quad{\dag{\underline{\boxed{\sf{A={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\dag{\underline{\boxed{\sf{C.I= A - P }}}}

Where

  • ➽ A = Amount
  • ➽ P = Principle
  • ➽ R = Rate of Interest
  • ➽ T = Time Period
  • ➽ C.I = Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

{\bigstar \:{\underline{\underline{\pmb{\frak{{Firstly, calculating\: the \: Amount.. }}}}}}}

\quad {: \longmapsto{\sf{Amount = {P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {: \longmapsto{\sf{Amount = {1000{\bigg(1 + \dfrac{10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{(1 \times 100) + 10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{100 + 10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{110}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg(\cancel{\dfrac{110}{100}}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{55}{50}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{55}{50} \times \dfrac{55}{50}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000{\bigg( \dfrac{3025}{2500}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {1000 \times  \dfrac{3025}{2500}}}}}

\quad {: \longmapsto{\sf{Amount = {\dfrac{1000 \times 3025}{2500}}}}}

\quad {: \longmapsto{\sf{Amount = {\dfrac{3025000}{2500}}}}}

\quad {: \longmapsto{\sf{Amount = {\cancel{\dfrac{3025000}{2500}}}}}}

\quad {: \longmapsto{\sf{Amount = {Rs.1210}}}}

\quad\dag{\underline{\boxed{\sf{\purple{Amount = {Rs.1210}}}}}}

\begin{gathered}\end{gathered}

{\bigstar{\underline{\underline{\pmb{\frak{Now,Finding \: the \: Compound \: Interest}}}}}}

\quad{: \longmapsto{\sf{Compound \: Interest = {Amount - Principle }}}}

  • Substituting the values

\quad{: \longmapsto{\sf{Compound \: Interest = {1210 - 1000 }}}}

\quad{ : \longmapsto{\sf{Compound \: Interest = {210 }}}}

\quad{\dag{\underline{\boxed{\sf{\purple{Compound \: Interest = {Rs.210}}}}}}}

  • Hence, The Compound Interest is Rs.210.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

\quad\dag{\underline{\boxed{\sf{\red{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\dag{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\quad\dag{\underline{\boxed{\sf{\red{ P=Amount - Interest }}}}}

\quad\dag{\underline{\boxed{\sf{\red{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\dag{\underline{\boxed{\sf{\red{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\dag{\underline{\boxed{\sf{\red{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

Similar questions