Math, asked by kanishkarm12345, 1 month ago

The compound Interest on ₹ 25000 for 3 years at 4% p.a compounded annually is _______​

Answers

Answered by TwilightShine
10

Answer :-

  • The compound interest on Rs 25000 for 3 years at 4% p.a compounded annually is Rs 3121.6.

Given :-

  • Principal = Rs 25000.
  • Rate = 4% p.a.
  • Time = 3 years.

To find :-

  • The compound inerest.

Step-by-step explanation :-

  • First let's find the amount, then we will use it to find the compound interest!

We know that :-

 \underline{ \boxed{\sf Amount = Principal \Bigg(1 + \dfrac{Rate}{100}\Bigg)^{Time}}}

---------------

Here,

  • Principal = Rs 25000.
  • Rate = 4% p.a.
  • Time = 3 years.

Hence,

 \rm Amount = 25000 \bigg(1 +  \dfrac{4}{100}  \bigg)^{3}

Making 1 a fraction by taking 1 as the denominator,

 \rm Amount = 25000 \bigg( \dfrac{1}{1}  +  \dfrac{4}{100}  \bigg)^{3}

The LCM of 1 and 100 is 100, so adding the fractions using their denominators,

 \rm Amount = 25000 \bigg( \dfrac{1 \times 100 + 4 \times 1}{100}  \bigg)^{3}

On simplifying,

 \rm Amount = 25000 \bigg( \dfrac{100 + 4}{100}  \bigg)^{3}

Adding 4 to 100,

 \rm Amount = 25000 \bigg( \dfrac{104}{100}  \bigg)^{3}

The power here is 3, so removing the brackets and multiplying 104/100 with itself 3 times,

 \rm Amount = 25000 \times  \dfrac{104}{100}  \times  \dfrac{104}{100}  \times  \dfrac{104}{100}

Let's multiply 104/100 with itself 3 times first.

 \rm Amount =25000 \times  \dfrac{104 \times 104 \times 104}{100 \times 100 \times 100}

On multiplying,

 \rm Amount =25000 \times  \dfrac{1124864}{1000000}

Cutting off the zeroes,

 \rm Amount = 25 \times  \dfrac{1124864}{1000}

Reducing the numbers,

 \rm Amount =1 \times  \dfrac{1124864}{40}

Multiplying 1 with 1124864,

 \rm Amount = \dfrac{1124864}{40}

Dividing 1124864 by 40,

  \overline{ \boxed{\rm Amount = Rs  \: 28121.6}}

---------------

Now, as we know the amount, let's find the compound interest!

We know that :-

 \underline{ \boxed{ \sf CI = Amount - Principal}}

Here,

  • Amount = Rs 28121.6.
  • Principal = Rs 25000.

Hence,

 \boxed{ \bf CI =28121.6 - 25000}

 \overline{ \boxed{ \bf CI =Rs \: 3121.6}}

  • Hence, the compound interest is Rs 3121.6.

---------------

Abbreviations used :-

 \rm CI = Compound \: Interest.

Answered by thebrainlykapil
3

Given :

  • Principal (P) = Rs 25000
  • Time (n) = 3 years
  • Rate (R) = 4% per annum

 \\

To Find :

  • Compound interest

 \\

Formulas :

\red \bigstar \: {\underline{\boxed{\mathcal {\pmb{\quad Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n}\quad}}}}}

 \\

\red \bigstar \: {\underline{\boxed{\mathcal {\pmb{\quad Compound \: Interest \: = \: Amount \: - \: Principal \quad}}}}}

 \\

Solution :

{:} \longrightarrow \sf \: Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 25000 \: \times \bigg(\:1 \: + \: \dfrac{4}{100}\bigg)^{3} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 25000 \: \times \bigg(\dfrac{104}{100}\bigg)^{3} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 25000\: \times \: \dfrac{104}{100} \: \times \: \dfrac{104}{100}  \: \times \: \dfrac{104}{100} \\ \\  {:} \longrightarrow \sf \: Amount \: = \: 25\cancel{000} \: \times \: \dfrac{104}{1 \cancel{00}} \: \times \: \dfrac{104}{10 \cancel{0}} \: \times \: \dfrac{104}{100}  \\ \\  {:} \longrightarrow \sf \: Amount \: = \: \dfrac{25 \:   \times  \:  104 \:  \times  \: 104 \:  \times  \: 104}{10 \:  \times  \: 100} \\  \\  {:} \longrightarrow \sf \: Amount \: = \: \dfrac{2600 \:  \times  \: 10816}{ 1000} \\  \\ {:} \longrightarrow \sf \: Amount \: = \: \dfrac{2,81,21,600}{ 1000} \\  \\    {:} \longrightarrow \underline{\boxed{\sf \: Amount \: = \: Rs \: 28,121.6}} \: \blue \bigstar\\ \\

━━━━━━━━━━

\longmapsto {\pmb{ Compound \: Interest \: = \: Amount \: - \: Principal} } \\ \\ \longmapsto {\sf{ Compound \: Interest \: = \: 28,121.6 \: - \: 25000} } \\ \\ \longmapsto \underline{\boxed{\pmb{ \red{ Compound \: Interest \: = \:Rs \:3,121.6} }}}

━━━━━━━━━━

\qquad \therefore\: \sf{ Amount \: = \underline {\underline{ Rs \: 28,121.6}}}\\

\qquad \therefore\: \sf{ Compound \: Interest\: = \underline {\underline{ Rs \: 3,121.6}}}\\

━━━━━━━━━━

Similar questions