Math, asked by Thedoubtfullguy, 1 day ago

The compound interest on ₹ 4000 for one year
at 5% p.a payable half-yearly is:

Answers

Answered by Anonymous
49

\large\underline{\underline{\maltese{\red{\pmb{\sf{\:Given :-}}}}}}

  • ➾ Principle = ₹4000
  • ➾ Rate = 5 %
  • ➾ Time = 1 year
  • ➾ Compounded = half yearly

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\color{yellow}{\pmb{\sf{\: To  \: Find:-}}}}}}

  • ➾ Compound Interest = ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\purple{\pmb{\sf{\:Solution :-}}}}}}

Formula Used :

\large{\blue{\bigstar}}{\underline{\boxed{\red{\sf{C.I = P\bigg(1 + \dfrac{R}{100} \bigg)^T - P}}}}}

Here :

  • ➳ C.I = Compound Interest = ?
  • ➳ P = Principle = 4000
  • ➳ R = Rate = 5 %
  • ➳ T = Time = 2T

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Finding the compound interest :

  • ➙ C.I = P(1 + R/100)^T - P
  • ➙ C.I = 4000(1 + 5/100)^2 - 4000
  • ➙ C.I = 4000(1 + 0.05)^2 - 4000
  • ➙ C.I = 4000(1.05)^2 - 4000
  • ➙ C.I = 4000 × 1.1025 - 4000
  • ➙ C.I = 4410 - 4000
  • ➙ C.I = Rs.410

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Therefore :

❝ Compound interest on the sum of Rs.4000 is 410 . ❞

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Answered by Atlas99
89

Solution:

Principal = ₹4000

Time = 1year

Rate = ₹5%

 \tt\bf\underline{\underline{A = P\bigg[1 +  \frac{R}{2 \times 100}}\bigg]^{2n}} \\

 \tt{=4000\bigg/1 +  \frac{5}{2 \times 100}}\bigg/^{2×1} \\

 \tt{ = 4000\bigg/1 +  \frac{5}{200}\bigg/}^{2} \\

 \tt{ = 4000\bigg/\frac{205}{200}\bigg/}^{2} \\

 \tt{=4000\bigg/ \frac{41}{40}\bigg/^2} \\

 \tt{=4000 \times  \frac{1681}{1600}} \\

 \tt{=₹4,202.5}

Amount = ₹4,202.5

Compound Interest = (Amount) - (original principal)

Compound Interest = ₹4,202.5 - 4000

Compound Interest = ₹ 202.5.

 \rule{210pt}{2pt}

Additional Information

When the interest is compounded annually

 \sf{A =P\bigg/1 +  \frac{R}{100}\bigg/^n} \\

When the interest is compounded quarterly

 \sf{A = P\bigg/1 +  \frac{R}{400}}\bigg/^{4n} \\

 \rule{200pt}{4pt}

Note - Read / as bracket

n = years

 {\underline{\overline{\overline{\overline{\underline{\underline{\rule{200pt}{5pt}}}}}}}}

Similar questions