Math, asked by mdabeed221, 5 months ago

the compound interest on Rs.2,000 for 2 years at 20% per annum when compounded half yearly ,is​

Answers

Answered by vanshikavikal448
133

 \huge{ \underline{ \underline \bold{answer}}}→

we have,

  • Principal,P = Rs. 2,000

for half yearly,

  • Rate , R = 20/2 = 10%
  • Time, n = 2 × 2 = 4

we know that,

 \boxed{ \bold{ \pink{amount ={ P \bigg\{1 +  \frac{ R}{100}\bigg\}^{n}  }}}} \\

then here,

 \:  \:  \:  \:  \:  \:  \:  \bold{A =2000 \bigg \{1 +  \frac{10}{100}  \bigg \} ^{4}  }\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \implies  \bold{A = 2000 \bigg \{ \frac{100 + 10}{100}  \bigg \}^{4} }\:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \bold{ A = 2000 \bigg \{ \frac{11 \cancel{0}}{10 \cancel{0}} } \bigg \}^{4}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:   \:  \:  \:    \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \implies  \bold{A = 2\cancel{0} \cancel{0} \cancel{0} \times  \frac{11}{1 \cancel{0}} \times  \frac{11}{1 \cancel{0}} \times  \frac{11}{1\cancel{0}} \times  \frac{11}{10} }  \:  \:  \: \\  \\  \implies \bold{A =  \frac{ 2\times 11 \times 11\times 11\times 11}{10}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bold{A = \frac{29282}{10}} \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \\  \\\implies\boxed{\bold{A=2928.2} }\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:   \:  \:  \:    \:\:  \:  \:

and we know that,

Compound Interest = Amount - Principal

 \implies  \bold{C.I = 2928.2 - 2000 } \\  \\  \implies \boxed{ \orange{ \bold{C.I = 928.2}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, Compound Interest is Rs. 928.2

Answered by prabhas24480
4

 \huge{ \underline{ \underline \bold{answer}}}→

we have,

Principal,P = Rs. 2,000

for half yearly,

Rate , R = 20/2 = 10%

Time, n = 2 × 2 = 4

we know that,

 \boxed{ \bold{ \pink{amount ={ P \bigg\{1 +  \frac{ R}{100}\bigg\}^{n}  }}}} \\

then here,

 \:  \:  \:  \:  \:  \:  \:  \bold{A =2000 \bigg \{1 +  \frac{10}{100}  \bigg \} ^{4}  }\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \implies  \bold{A = 2000 \bigg \{ \frac{100 + 10}{100}  \bigg \}^{4} }\:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \bold{ A = 2000 \bigg \{ \frac{11 \cancel{0}}{10 \cancel{0}} } \bigg \}^{4}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:   \:  \:  \:    \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \implies  \bold{A = 2\cancel{0} \cancel{0} \cancel{0} \times  \frac{11}{1 \cancel{0}} \times  \frac{11}{1 \cancel{0}} \times  \frac{11}{1\cancel{0}} \times  \frac{11}{10} }  \:  \:  \: \\  \\  \implies \bold{A =  \frac{ 2\times 11 \times 11\times 11\times 11}{10}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bold{A = \frac{29282}{10}} \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \\  \\\implies\boxed{\bold{A=2928.2} }\:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:   \:  \:  \:    \:\:  \:  \:

and we know that,

Compound Interest = Amount - Principal

 \implies  \bold{C.I = 2928.2 - 2000 } \\  \\  \implies \boxed{ \orange{ \bold{C.I = 928.2}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, Compound Interest is Rs. 928.2

Similar questions