Math, asked by shreyashkumbhar25, 3 months ago

the compound interest on Rs.40000 5% pa and 4 years is​

Answers

Answered by SachinGupta01
12

\bf \: \underline{ Given }\: :

\sf \: Principal \: : \:  Rs. \:  40000

\sf \: Rate \: of \: Interest \: : \: 5  \: \%

\sf \: Time \: : \: 4\: Years.

\bf \: \underline{To \: find }\: :

\sf \: We \: have \: to \: find \: the \: Compound \: Interest.

\bf \: \underline{Solution \: } \:  :

\sf \: First \: of \: all \: we \: have  \: to \: find \: the \: amount.

{ \underline{\boxed{ \red{ \sf \: Amount \: : P \: \bigg(\: 1 + \frac{R}{100} \: \bigg ) ^{n} }}}}

\sf \: \underline{Putting \: the \: values},

\sf \:  \implies  \:  40000 \: \bigg(\: 1 + \dfrac{5}{100} \bigg ) ^{4}

\sf \:\implies\: 40000 \: \bigg(\: 1 + \dfrac{1}{20} \bigg ) ^{4}

\sf \:\implies\: 40000 \: \bigg(\dfrac{20 + 1}{20} \bigg ) ^{4}

\sf \:\implies\: 40000 \: \bigg(\dfrac{21}{20} \bigg ) ^{4}

\sf \:\implies\:  40000  \times \dfrac{194481}{160000}

\sf \:\implies\:   \dfrac{194481}{4}

\sf \:\implies\:  48620.25

 \sf \:  \pink{Thus, \:  amount =Rs.  \: 48620.25 }

\sf \: \underline{Now, we \: will \: find \: the \: Compound \: Interest.}

{ \underline{ \boxed{ \sf \red{CI = Amount \: - Principal }}}}

\sf \: \underline{Putting \: the \: values},

{ \sf {CI = 48620.25\: - \: 40000}}

 \underline{ \boxed{ \purple{{ \sf {CI = Rs. \: 8620.25}}}}}

Answered by Anonymous
156

Answer:

\begin{gathered}\large\begin{gathered}\begin{gathered}\begin{gathered} \dag\: \bf\red {Given :}\begin{cases} &\sf{Principle = Rs.40000} \\ &\sf{{Rate = 5 \: \%}}\\ &\sf{{Time = 4 \: years}} \end{cases}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered} \\ \end{gathered}

\begin{gathered}\large\begin{gathered}\begin{gathered}\begin{gathered} \dag\: \bf\red {To \: Find  :}  \begin{cases} &\sf{Compound \: Interest } \end{cases}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered} \\ \end{gathered}

\large{\dag \: \bf\red{Using  \: Formulae : }}

\begin{gathered} \\ \end{gathered}

{\bigstar{\underline{\boxed{\sf \: Amount \: : P \: \bigg(\: 1 + \frac{R}{100} \: \bigg ) ^{n}}}}}

\begin{gathered} \\ \end{gathered}

{\bigstar{\boxed{\sf{Compound \: Interest = Amount- Principal}}}}

\begin{gathered} \\ \end{gathered}

\large {\dag \: {\bf{\red{Solution : }}}}

\begin{gathered} \\ \end{gathered}

{\underline{\pink{\pmb{\frak{Firstly \: Finding  \: The \:  Amount }}}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{P \: \bigg(\: 1 + \dfrac{R}{100} \: \bigg) ^{n}}}

\begin{gathered} \\ \end{gathered}

  • Substituting the values

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  =  \bf{40000 \: \bigg(\: 1 + \dfrac{5}{100} \: \bigg ) ^{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  =  \bf{40000 \: \bigg(\: \dfrac{100 + 5}{100} \: \bigg ) ^{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{ 40000 \: \bigg(\: \dfrac{105}{100} \: \bigg ) ^{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{ 40000 \: \bigg(\: {\cancel\dfrac{105}{100}}\: \bigg ) ^{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  =  \bf{40000 \: \bigg(\:\dfrac{21}{20}\: \bigg ) ^{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{ 40000 \: \bigg(\dfrac{21}{20} \times \dfrac{21}{20}  \times \dfrac{21}{20} \times \dfrac{21}{20}\bigg )}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{ 40000 \: \bigg(\dfrac{194,481}{160,000} \bigg )}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf{ 40000\times \dfrac{194,481}{160,000}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf \: Amount \:  = \bf {\cancel{40000}\times \dfrac{194,481} {\cancel{160,000}}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf  \: Amount=\bf{\dfrac{194,481}{4}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf  \: Amount=\bf {\cancel{\dfrac{194,481}{4}}}}

\begin{gathered} \\ \end{gathered}

{: \implies\sf  \: Amount=\bf{48,620.25}}

\begin{gathered} \\ \end{gathered}

\bigstar{\underline{\boxed{\sf{Amount={Rs.48,620.25}}}}}

\begin{gathered} \\ \end{gathered}

 \underline\pink{\pmb{\frak{Now  \: Finding \:  The \:  Compound \:  Interest }}}

\begin{gathered} \\ \end{gathered}

{: \implies \: \sf{Compound \: Interest =  \bf{Amount- Principal}}}

\begin{gathered} \\ \end{gathered}

  • Substituting the values

\begin{gathered} \\ \end{gathered}

{: \implies \: \sf{Compound \: Interest =  \bf{48,620.25- 40000}}}

\begin{gathered} \\ \end{gathered}

{: \implies \: \sf{Compound \: Interest = \bf 8620.25}}

\begin{gathered} \\ \end{gathered}

{\bigstar{\underline{ \boxed{\sf{Compound \: Interest = 8620.25}}}}}

\begin{gathered} \\ \end{gathered}

  • Henceforth,The Compound Interest is Rs.8620.29.

\begin{gathered} \\ \end{gathered}

\large {\dag \: {\bf{\red{Know \: More : }}}}

Formula of Simple Interest (S.I)

\begin{gathered} \\ \end{gathered}

{\boxed{\sf{S.I = \dfrac{P \times R \times T}{100}}}}

\begin{gathered} \\ \end{gathered}

Formula of Principle(P) if Amount and Interest given

\begin{gathered} \\ \end{gathered}

★ {\boxed{\sf{P=Amount - Interest}}}

\begin{gathered} \\ \end{gathered}

Formula of Principle (P) if Interest,time and rate given

\begin{gathered} \\ \end{gathered}

★ {\boxed{\sf{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}

\begin{gathered} \\ \end{gathered}

Formula of Principle (P) if amount,time and rate given

\begin{gathered} \\ \end{gathered}

★ {\boxed{\sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}

\begin{gathered} \\ \end{gathered}

Formula of Amount if Principle (P) and Interest (I) given

\begin{gathered} \\ \end{gathered}

★ {\boxed{\sf{Amount = Principle + Interest }}}

Similar questions