Math, asked by saransumathiki, 1 year ago

the compound interest on rupees 30,000 at 7% per annum for a certain time is rupees 4347. Find the time period if the interest is compound annually.

Answers

Answered by siddhartharao77
7
Given, 30000 + 4347

           = 34347

Formula is p(1+r/100)^n

               = 30000(1+7/100)^n  = 34347

               = (107/100)^n = 34347/30000

               = 11449/10000

               = (107/100)^2

So, the time period = 2 years.


Hope this helps!

Answered by ƦαíηвσωStαƦ
33

{\mathbf {\blue{S}{\underline{\underline{olution:-}}}}}

\mathfrak{\underline{Answer:-}}

  • The time period if the interest is compound annually is 2 years.

\mathfrak{\underline{Given:-}}

  • The compound interest on rupees 30,000 at 7% per annum for a certain time is rupees 4347.

\mathfrak{\underline{Need\:To\: Find:-}}

  • The time period if the interest is compound annually = ?

{\mathbf {\blue{E}{\underline{\underline{xplanation:-}}}}}

In Case 1:

\:\:\:\:\dag\bf{\underline \green{Formula\:used\:here:-}}

\bigstar{\underline{\boxed{\sf\purple{Amount = Principal + Interest}}}} \\\\

\:\:\:\:\dag\bf{\underline \blue{Putting\:the\:values:-}}

\longrightarrow \sf {Amount = Rs.(30000 + 4347) } \\\\

\longrightarrow \sf {Amount = Rs. 34347 } \\\\

\rule{200}{2}

In Case 2:

Let the time be N Years.

\:\:\:\:\dag\bf{\underline \green{Formula\:used\:here:-}}

\bigstar{\underline{\boxed{\sf\purple{Amount = P\bigg(1 + \dfrac{R}{100}\bigg)^N}}}} \\\\

\:\:\:\:\dag\bf{\underline \blue{Putting\:the\:values:-}}

\longrightarrow \sf {34347 = 30000\bigg(1 + \dfrac{7}{100}\bigg)^N } \\\\

\longrightarrow \sf {\dfrac{34347}{30000} = \bigg(\dfrac{107}{100}\bigg)^N} \\\\

\longrightarrow \sf {\dfrac{11449}{10000} = \bigg(\dfrac{107}{100}\bigg)^N}  \\\\

\longrightarrow \sf {\bigg(\dfrac{107}{100}\bigg)^2 = \bigg(\dfrac{107}{100}\bigg)^N}  \\\\

\longrightarrow</p><p>\large\boxed{\sf{\purple{N\:=\: 2 \: years}}} \\\\

\:\:\:\:\dag\bf{\underline{\underline \blue{Hence:-}}}

  • The time period if the interest is compound annually is 2 years.

\rule{200}{2}

Similar questions