Math, asked by shreya67764, 7 months ago

The compound interest on rupees 30,000 at 7% per annum for a certain time is rupees 4347. Find the time period if the interest is compound annually.​

Answers

Answered by DhanurRelhan
3

ATQ

30000 {( 1 +  \frac{7}{100} )}^{t}  - 30000 = 4347

 {( \frac{107}{100} )}^{t}  =  \frac{34347}{30000}

 {( \frac{107}{100} )}^{t}  =  \frac{11449}{10000}

 {( \frac{107}{100} )}^{t}  =    {\frac{107}{100}}^{2}

Therefore time = 2 years

Hope it Helps

FOLLOW

Answered by Anonymous
6

\;\;\underline{\textbf{\textsf{ Given:-}}}

• The compound interest on rupees 30,000 at 7% per annum for a certain time is rupees 4347.

\;\;\underline{\textbf{\textsf{ To Find :-}}}

•What's the time period if the interest is compound annually ?

\;\;\underline{\textbf{\textsf{ Formula  Used :-}}}

\bigstar{\underline{\boxed{\sf\green{Amount = Principal + Interest}}}} \\\\

\bigstar{\underline{\boxed{\sf\green{Amount = P\bigg(1 + \dfrac{R}{100}\bigg)^X}}}} \\\\

\;\;\underline{\textbf{\textsf{ Solution  :-}}}

Let the time be X Years.

We know that,

\bigstar{\underline{\boxed{\sf\green{Amount = Principal + Interest}}}} \\\\

\longrightarrow \sf {Amount = Rs.(30000 + 4347) } \\\\

\longrightarrow \sf {Amount = Rs. 34347 } \\\\

_______________________________________________________

Again, we know

\bigstar{\underline{\boxed{\sf\green{Amount = P\bigg(1 + \dfrac{R}{100}\bigg)^X}}}} \\\\

\longrightarrow \sf {34347 = 30000\bigg(1 + \dfrac{7}{100}\bigg)^X } \\\\

\longrightarrow \sf {\dfrac{34347}{30000} = \bigg(\dfrac{107}{100}\bigg)^X} \\\\

\longrightarrow \sf {\dfrac{11449}{10000} = \bigg(\dfrac{107}{100}\bigg)^X}  \\\\

\longrightarrow \sf {\bigg(\dfrac{107}{100}\bigg)^2 = \bigg(\dfrac{107}{100}\bigg)^X}  \\\\

\\  \\  \tt{ \green{ \longrightarrow \: X = 2 \: years}}

\small{\underline{\sf{\green{Hence -}}}}

The time period if the interest is compound annually is 2 years.

Similar questions