Math, asked by 6777775666, 3 months ago

the concept of Factor Theorem



Give example ​

Answers

Answered by Anonymous
6

Concept With Example :-

Qn :-

  • If (x+1) is a factor of p(x) = x² - 3ax + 3a - 7, then find the value of a.

_____________

Here the concept of Factor Theorem has been used. We see that we are given a expression and there we need to find the value of a. So firstly using Factor Theorem, we can apply the value of x in the expression. And then equating this with 0 according to factor theorem, we can find the value of a.

______________________________________

Solution :-

Given,

» Dividend = p(x) = x² - 3ax + 3a - 7

» Divisor = g(x) = x + 1

  • Factor Theorem : By Factor Theorem, we know that if a polynomial g(x) is the factor of another polynomial p(x) then, when the value of x from g(x) is applied to p(x) then the result comes out to be 0.

From this, we get

→ g(x) = 0

→ x + 1 = 0

→ x = -1

-----------------------------------------------------------

~ For the value of a ::

We have,

\;\sf{\rightarrow\;\;p(x)\;=\;\bf{x^{2}\;-\;3ax\;+\;3a\;-\;7}}

By applying the value of x here, we get

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)^{2}\;-\;3(-1)a\;+\;3a\;-\;7}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{1\;-\;(-3)a\;+\;3a\;-\;7}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{1\;+\;3a\;+\;3a\;-\;7}}

\;\sf{\rightarrow\;\;\green{p(-1)\;=\;\bf{3a\;+\;3a\;-\;6}}}

From Factor Theorem, we get when we apply the value of g(x) then, p(x) = 0.

So,

\;\bf{\Longrightarrow\;\;3a\;+\;3a\;-\;6\;=\;0}

\;\bf{\Longrightarrow\;\;3a\;+\;3a\;=\;6}

\;\bf{\Longrightarrow\;\;6a\;=\;6}

\;\bf{\Longrightarrow\;\;a\;=\;\dfrac{6}{6}}

\;\bf{\red{\Longrightarrow\;\;a\;=\;1}}

\;\underline{\boxed{\tt{Hence,\;\;value\;\:of\;\:a\;=\;\bf{\purple{1}}}}}

______________________________________

Answered by suteekshna369
1

Step-by-step explanation:

Answer: An example of factor theorem can be the factorization of 6×2 + 17x + 5 by splitting the middle term. In this example, one can find two numbers, 'p' and 'q' in a way such that, p + q = 17 and pq = 6 x 5 = 30. After that one can get the factors.

Similar questions