Math, asked by vidhya57, 2 months ago

the condition that one root of ax2+bx+c=0 may be square the other is​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know,

 \sf \: If  \:  \alpha , \beta  \: are \: the \: zeroes \: of \:  {ax}^{2} + bx + c  = 0\: then

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Let's solve the problem now!!

Given that

  • One zero of ax² + bx + c = 0 is square of other

 \sf \: Let \:y\:and \:{y}^{2} \: be \: the \: zeroes\:of\:{ax}^{2}+bx + c = 0\:

So,

\rm :\longmapsto\:{\purple{\sf Product\ of\ the\ zeroes=\dfrac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:y \times  {y}^{2}  = \dfrac{c}{a}

\bf\implies \: {y}^{3} = \dfrac{c}{a}

Also,

\rm :\longmapsto\:{\purple{\sf Sum\ of\ the\ zeroes=\dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:y +  {y}^{2}  =  - \dfrac{b}{a}

On Cubing both sides, we get

\rm :\longmapsto\: {(y +  {y}^{2})}^{3} =  - \dfrac{ {b}^{3} }{ {a}^{3} }

\rm :\longmapsto\: {y}^{3} +  {y}^{6} + 3(y)( {y}^{2})(y +{y}^{2})= - \dfrac{ {b}^{3} }{ {a}^{3} }

\rm :\longmapsto\: {y}^{3} +  {y}^{6} + 3{y}^{3}(y +{y}^{2})= - \dfrac{ {b}^{3} }{ {a}^{3} }

\rm :\longmapsto\:\dfrac{c}{a} +  {\bigg(\dfrac{c}{a}\bigg) }^{2} + 3\bigg(\dfrac{c}{a}\bigg)\bigg( - \dfrac{b}{a}\bigg) = -\dfrac{ {b}^{3} }{ {a}^{3} }

  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \because \purple{ \sf \:  {y}^{3} = \dfrac{c}{a} \:  \:  \:  \: and \:  \:  \:  \: y +  {y}^{2} =  - \dfrac{b}{a}}}

\rm :\longmapsto\:\dfrac{c}{a}  + \dfrac{ {c}^{2} }{ {a}^{2} }  - 3\dfrac{bc}{ {a}^{2} }  =  - \dfrac{ {b}^{3} }{ {a}^{3} }

\rm :\longmapsto\:\dfrac{ac +  {c}^{2} - 3bc }{ {a}^{2} }  =  - \dfrac{ {b}^{3} }{ {a}^{3} }

\rm :\longmapsto\: {ca}^{2} +  {ac}^{2} - 3abc =  -  {b}^{3}

\rm :\longmapsto\: {ca}^{2} +  {ac}^{2} - 3abc + {b}^{3}=0

Hence, the required condition is

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \purple{ \bf\: {ca}^{2} +  {ac}^{2}+ {b}^{3} - 3abc=0}}}

Additional Information :-

Important Identities :-

\boxed{\bf \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha +   \beta) }^{3} - 3 \alpha  \beta ( \alpha +   \beta)}

\boxed{\bf \:  {( \alpha -   \beta )}^{2}  =  {( \alpha   + \beta)}^{2} - 4 \alpha  \beta }

Similar questions