Math, asked by ABHIRAM20887, 9 months ago

The Condition that one root of x^3+px^2+qx+r=0 is sum of the other two roots, is
a)q^3 = 4(pq - 2r)
b)p^3 = 4(pq- 2r)
c)r^3 = 4(pr- 2q)
4)p^3 = 4(pq- r)​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\textsf{One root of}\;\mathsf{x^3+p\,x^2+q\,x+r=0}

\;\;\textsf{is the sum of the other two}

\underline{\textbf{To find:}}

\textsf{The condition that one root of the equation is the}

\textsf{sum of the other two roots}

\underline{\textbf{Solution:}}

\textsf{Let the roots of the equation be a, b and c}

\mathsf{Then,\;a=b+c}

\underline{\mathsf{S_1:}}

\mathsf{a+b+c=-p}

\mathsf{a+a=-p}

\mathsf{2\,a=-p}

\mathsf{a=\dfrac{-p}{2}}--------(1)

\underline{\mathsf{S_2:}}

\mathsf{ab+bc+ca=q}

\mathsf{a(b+c)+bc=q}

\mathsf{a(a)+bc=q}

\mathsf{a^2+bc=q}

\mathsf{Using (1), we get}

\mathsf{\left(\dfrac{-p}{2}\right)^2+bc=q}

\mathsf{\dfrac{p^2}{4}+bc=q}-------(2)

\underline{\mathsf{S_3:}}

\mathsf{a\,b\,c=-r}

\mathsf{\left(\dfrac{-p}{2}\right)b\,c=-r}

\mathsf{\left(\dfrac{p}{2}\right)b\,c=r}

\mathsf{b\,c=\dfrac{2r}{p}}---------(3)

\textsf{Using (3) in(2), we get}

\mathsf{\dfrac{p^2}{4}+\dfrac{2r}{p}=q}

\mathsf{\dfrac{p^3+8r}{4p}=q}

\mathsf{p^3+8r=4pq}

\mathsf{p^3=4pq-8r}

\implies\boxed{\mathsf{p^3=4(pq-2r)}}

\underline{\textbf{Answer:}}

\textsf{Option (b) is correct}

#SPJ3

Answered by rohitvr3377
0

Answer:

option b is right answer

Attachments:
Similar questions