Math, asked by joonnischaya, 1 month ago

The conjugate of ( -2 + 3 i ) ( 5 – i ) is
(a) ( -2 + 3 i ) ( 5 + i ) (b) ( -2 – 3 i )( 5 – i ) (c) - 7 - 17 i (d) -13 + 17 i

Answers

Answered by anamikachand61
0

Answer:

(-2-3i)(5-i)

Step-by-step explanation:

please make brilliant

Answered by halamadrid
0

Given,

A complex number ( -2 + 3i )( 5 – 1i ).

To find,

The conjugate of the given complex number.

Solution,

  • We can simply find the conjugate of a complex number by changing the sign of the imaginary part.
  • The conjugate of a complex number (a + ib) would be (a - ib).

Now,

  • First, we will multiply the complex number ( -2 + 3i )( 5 – 1i ).

        ⇒ -2( 5 - 1i ) + 3i( 5 - 1i ) =( -2 )( 5 ) + ( -2 )( -1i ) + ( 3i )( 5 ) + ( 3i )( -1i )

        ⇒ -10 + 2i + 15i - 3i²

        ⇒ -10 + 2i +15i -3(-1)      (Note: i² = -1, where, i is an imaginary number.)

        ⇒ -10 + 17 i +3 = - 7 + 17i.

  • After multiplying the complex numbers we get the product as = -7 + 17i
  • The conjugate of - 7 + 17i  will be -7 - 17i.

Hence, The conjugate of ( -2 + 3 i ) ( 5 – i ) is -7 - 17i. (Option c)

Similar questions
Math, 15 days ago