the constant term in the expression of (x+2/x)^6
Answers
Answered by
0
Answer:
Let y=x+2x
(1+x+2x)6=(1+y)6=∑k=06(6k)yk
For constant term, look for constant term in the expansion of yk
yk=(x+2x)k=∑r=0k(kr).xr.(2x)k−r
yk=∑r=0k(kr).xr−k+r.2k−r
yk=∑r=0k(kr).x2r−k.2k−r
∴(1+x+2x)6=∑k=06(6k)yk
=∑k=06(6k).∑r=0k(kr).x2r−k.2k−r
=∑k=06∑r=0k(6k).(kr).2k−r.x2r−k
Coefficient of any term is ∑k=06∑r=0k(6k).(kr).2k−r
For constant term: 2r−k=0
This is possible when:
k=0⟹r=0
C1=(60).(00).20−0=1
k=2⟹r=1
C2=(62).(21).22−1=
6∗51∗2∗2∗2=60
k=4⟹r=2
C3=(64).(42).24−2=
6∗5∗4∗31∗2∗3∗4∗4∗31∗2∗4=360
k=6⟹r=3
C4=(66).(63).26−3=
=1∗6∗5∗41∗2∗3∗8=160
Constant Term =C1+C2+C3+C4=1+60+360+160=581
Ans: 581
Attachments:
Similar questions